toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Cravens, Z.M.; Boyles, J.G. url  doi
openurl 
  Title Illuminating the physiological implications of artificial light on an insectivorous bat community Type Journal Article
  Year 2018 Publication Oecologia Abbreviated Journal Oecologia  
  Volume in press Issue Pages  
  Keywords Animals  
  Abstract Global light pollution threatens to disturb numerous wildlife species, but impacts of artificial light will likely vary among species within a community. Thus, artificial lights may change the environment in such a way as to create winners and losers as some species benefit while others do not. Insectivorous bats are nocturnal and a good model to test for differential effects of light pollution on a single community. We used a physiological technique to address this community-level question by measuring plasma ss-hydroxybutyrate (a blood metabolite) concentrations from six species of insectivorous bats in lit and unlit conditions. We also recorded bat calls acoustically to measure activity levels between experimental conditions. Blood metabolite level and acoustic activity data suggest species-specific changes in foraging around lights. In red bats (Lasiurus borealis), ss-hydroxybutyrate levels at lit sites were highest early in the night before decreasing. Acoustic data indicate pronounced peaks in activity at lit sites early in the night. In red bats on dark nights and in the other species in this community, which seem to avoid lights, ss-hydroxybutyrate remained relatively constant. Our results suggest red bats are more willing to expend energy to actively forage around lights despite potential negative impacts, while other, generally rarer species avoid lit areas. Artificial light appears to have a bifurcating effect on bat communities, whereby some species take advantage of concentrated prey resources, yet most do not. Further, this may concentrate light-intolerant species into limited dark refugia, thereby increasing competition for depauperate, phototactic insect communities.  
  Address Cooperative Wildlife Research Laboratory, Department of Zoology, Southern Illinois University, Carbondale, IL, 62901, USA  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0029-8549 ISBN Medium  
  Area Expedition Conference  
  Notes PMID:30446844 Approved no  
  Call Number (up) GFZ @ kyba @ Serial 2061  
Permanent link to this record
 

 
Author Holveck, M.-J.; Grégoire, A.; Doutrelant, C.; Lambrechts, M.M. url  doi
openurl 
  Title Nest height is affected by lamppost lighting proximity in addition to nestbox size in urban great tits Type Journal Article
  Year 2018 Publication Journal of Avian Biology Abbreviated Journal J Avian Biol  
  Volume in press Issue Pages  
  Keywords Animals  
  Abstract Both natural and artificial light have proximate influences on many aspects of avian biology, physiology and behaviour. To date artificial light at night is mostly considered as being a nuisance disrupting for instance sleep and reproduction of diurnal species. Here, we investigate if lamppost night lighting affects cavity‐nesting bird species inside their breeding cavity. Nest height in secondary cavity‐nesting species is the result of trade‐offs between several selective forces. Predation is the prevailing force leading birds to build thin nests to increase the distance towards the entrance hole. A thin nest may also limit artificial light exposure at night. Yet, a minimum level of daylight inside nesting cavities is necessary for adequate visual communication and/or offspring development. Against this background, we hypothesised that avian nest‐building behaviour varies in response to a change in night lighting. We monitored nest height of urban great tits (Parus major) during six years and found that it varied with artificial light proximity. The birds built thinner nests inside nestboxes of various sizes in response to increasing lamppost night light availability at the nest. In large nestboxes, the nests were also thinner when a lamppost was present in the territory. Whether this relationship between artificial night lighting and nest height reflects a positive or negative effect of urbanisation is discussed in the light of recent experimental studies conducted in rural populations by other research groups.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0908-8857 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number (up) GFZ @ kyba @ Serial 2062  
Permanent link to this record
 

 
Author Maggi, E.; Benedetti-Cecchi, L. url  doi
openurl 
  Title Trophic compensation stabilizes marine primary producers exposed to artificial light at night Type Journal Article
  Year 2018 Publication Marine Ecology Progress Series Abbreviated Journal Mar. Ecol. Prog. Ser.  
  Volume 606 Issue Pages 1-5  
  Keywords Plants; Animals; Ecology  
  Abstract Artificial light at night (ALAN) is a widespread phenomenon along coastal areas. Despite increasing evidence of pervasive effects of ALAN on patterns of species distribution and abundance, the potential of this emerging threat to alter ecological processes in marine ecosystems has remained largely unexplored. Here, we show how exposure to white LED lighting, comparable to that experienced along local urbanized coasts, significantly enhanced the impact of grazing gastropods on epilithic microphytobenthos (MPB). ALAN increased both the photosynthetic biomass of MPB and the grazing pressure of gastropods, such that consumers compensated for the positive effect of night lighting on primary producers. Our results indicate that trophic interactions can provide a stabilizing compensatory mechanism against ALAN effects in natural food webs.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0171-8630 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number (up) GFZ @ kyba @ Serial 2063  
Permanent link to this record
 

 
Author Jan Stenvers, D.; Scheer, F.A.J.L.; Schrauwen, P.; la Fleur, S.E.; Kalsbeek, A. url  doi
openurl 
  Title Circadian clocks and insulin resistance Type Journal Article
  Year 2018 Publication Nature Reviews. Endocrinology Abbreviated Journal Nat Rev Endocrinol  
  Volume in press Issue Pages  
  Keywords Human Health; Review  
  Abstract Insulin resistance is a main determinant in the development of type 2 diabetes mellitus and a major cause of morbidity and mortality. The circadian timing system consists of a central brain clock in the hypothalamic suprachiasmatic nucleus and various peripheral tissue clocks. The circadian timing system is responsible for the coordination of many daily processes, including the daily rhythm in human glucose metabolism. The central clock regulates food intake, energy expenditure and whole-body insulin sensitivity, and these actions are further fine-tuned by local peripheral clocks. For instance, the peripheral clock in the gut regulates glucose absorption, peripheral clocks in muscle, adipose tissue and liver regulate local insulin sensitivity, and the peripheral clock in the pancreas regulates insulin secretion. Misalignment between different components of the circadian timing system and daily rhythms of sleep-wake behaviour or food intake as a result of genetic, environmental or behavioural factors might be an important contributor to the development of insulin resistance. Specifically, clock gene mutations, exposure to artificial light-dark cycles, disturbed sleep, shift work and social jet lag are factors that might contribute to circadian disruption. Here, we review the physiological links between circadian clocks, glucose metabolism and insulin sensitivity, and present current evidence for a relationship between circadian disruption and insulin resistance. We conclude by proposing several strategies that aim to use chronobiological knowledge to improve human metabolic health.  
  Address Netherlands Institute for Neuroscience (NIN), Royal Dutch Academy of Arts and Sciences (KNAW), Amsterdam, Netherlands. a.kalsbeek@nin.knaw.nl  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1759-5029 ISBN Medium  
  Area Expedition Conference  
  Notes PMID:30531917 Approved no  
  Call Number (up) GFZ @ kyba @ Serial 2133  
Permanent link to this record
 

 
Author O'Connell, H. A. url  openurl
  Title Streetlights in the city: understanding the distribution of Houston streetlights Type Journal Article
  Year 2017 Publication Abbreviated Journal  
  Volume Issue Pages  
  Keywords Lighting; Society  
  Abstract There are at least 173,724 streetlights in the city of Houston, or about 15 streetlights per mile of roadway in the average Houston neighborhood. But there is wide variation in streetlight density across those neighborhoods. This report offers several important findings. First, black and Hispanic neighborhoods have higher concentrations of streetlights than white neighborhoods. Second, mixed-income neighborhoods tend to have higher concentrations of streetlights than the city’s wealthiest and poorest neighborhoods.

In the context of this discussion, we should consider the possibility that some areas of the city are overly lit in addition to being concerned about the places without enough lights. There may be a point at which having more lights actually becomes a negative. We need to get a better understanding of the lived consequences of the level of available lighting before making any further decisions regarding city streetlights.
 
  Address  
  Corporate Author Thesis  
  Publisher Rice | Kinder Institute for urban research Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number (up) GFZ @ kyba @ Serial 2068  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: