|   | 
Details
   web
Records
Author Foth, M., Caldwell, G.A.
Title More-than-human media architecture Type Journal Article
Year 2018 Publication Abbreviated Journal
Volume Issue Pages
Keywords Architecture; Lighting; Planning
Abstract We consider some of the planetary conditions and global circumstances that both research and practice of media architecture are embedded within, such as climate change, pollution, resource consumption, and loss of biodiversity. While there has been a notable increase in emphasis on participation and engagement in design and use, with the aim to increase the involvement of diverse and often marginalised citizens, a human-centred approach to media architecture comes with its own set of problems. In this paper, we want to draw the attention of the media architecture community to the fallacy of human exceptionalism and anthropocentrism. We present a critical review of examples of media architecture projects and installations that question our understanding of urban space as separate from nature, and designed primarily for humans and just humans. Informed by studies in disciplines such as science and technology studies, critical geography, urban planning, and interaction design, we use insights derived from our review to discuss ways towards a more-than-human approach to media architecture. We conclude by proposing for discussion nascent design considerations for media architecture to go beyond the needs of just humans and to consider new ways to appreciate and cater for our broader ecological entanglements with plants, animals, and the environment at large.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference Media Architecture Biennale, 13-16 November 2018, Beijing, China
Notes Approved no
Call Number (up) GFZ @ kyba @ Serial 2081
Permanent link to this record
 

 
Author Navas Gonzalez, F.J.; Jordana Vidal, J.; Pizarro Inostroza, G.; Arando Arbulu, A.; Delgado Bermejo, J.V.
Title Can Donkey Behavior and Cognition Be Used to Trace Back, Explain, or Forecast Moon Cycle and Weather Events? Type Journal Article
Year 2018 Publication Animals : an Open Access Journal From MDPI Abbreviated Journal Animals (Basel)
Volume 8 Issue 11 Pages
Keywords Moonlight; Animals
Abstract Donkeys have been reported to be highly sensitive to environmental changes. Their 8900-8400-year-old evolution process made them interact with diverse environmental situations that were very distant from their harsh origins. These changing situations not only affect donkeys' short-term behavior but may also determine their long-term cognitive skills from birth. Thus, animal behavior becomes a useful tool to obtain past, present or predict information from the environmental situation of a particular area. We performed an operant conditioning test on 300 donkeys to assess their response type, mood, response intensity, and learning capabilities, while we simultaneously registered 14 categorical environmental factors. We quantified the effect power of such environmental factors on donkey behavior and cognition. We used principal component analysis (CATPCA) to reduce the number of factors affecting each behavioral variable and built categorical regression (CATREG) equations to model for the effects of potential factor combinations. Effect power ranged from 7.9% for the birth season on learning (p < 0.05) to 38.8% for birth moon phase on mood (p < 0.001). CATPCA suggests the percentage of variance explained by a four-dimension-model (comprising the dimensions of response type, mood, response intensity and learning capabilities), is 75.9%. CATREG suggests environmental predictors explain 28.8% of the variability of response type, 37.0% of mood, and 37.5% of response intensity, and learning capabilities.
Address The Worldwide Donkey Breeds Project, Faculty of Veterinary Sciences, University of Cordoba, 14071 Cordoba, Spain. juanviagr218@gmail.com
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2076-2615 ISBN Medium
Area Expedition Conference
Notes PMID:30463193 Approved no
Call Number (up) GFZ @ kyba @ Serial 2083
Permanent link to this record
 

 
Author Pattison, P.M.; Tsao, J.Y.; Brainard, G.C.; Bugbee, B.
Title LEDs for photons, physiology and food Type Journal Article
Year 2018 Publication Nature Abbreviated Journal Nature
Volume 563 Issue 7732 Pages 493-500
Keywords Lighting; Human Health; Plants; Review
Abstract Lighting based on light-emitting diodes (LEDs) not only is more energy efficient than traditional lighting, but also enables improved performance and control. The colour, intensity and distribution of light can now be controlled with unprecedented precision, enabling light to be used both as a signal for specific physiological responses in humans and plants, and as an efficient fuel for fresh food production. Here we show how a broad and improved understanding of the physiological responses to light will facilitate greater energy savings and provide health and productivity benefits that have not previously been associated with lighting.
Address Utah State University, Logan, UT, USA
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0028-0836 ISBN Medium
Area Expedition Conference
Notes PMID:30464269 Approved no
Call Number (up) GFZ @ kyba @ Serial 2110
Permanent link to this record
 

 
Author Liu, Q.; Manning, A.J.; Duston, J.
Title Light intensity and suppression of nocturnal plasma melatonin in Arctic charr (Salvelinus alpinus) Type Journal Article
Year 2018 Publication Comparative Biochemistry and Physiology. Part A, Molecular & Integrative Physiology Abbreviated Journal Comp Biochem Physiol A Mol Integr Physiol
Volume in press Issue Pages
Keywords Animals
Abstract The problem of early sexual maturation among farmed Arctic charr and other salmonids can be effectively reduced by 24h light overwinter, provided it is bright enough to over-ride interference from the natural daylength cycle. To determine the threshold light intensity to suppress the nocturnal elevation of plasma melatonin, three groups of individually tagged fish (n=26-28/group ca. 1040g) were reared on 12h light: 12h dark (LD 12:12) and subjected to nighttime light intensities of either 50-65, 0.1-0.3 or 0 (control) lux for five months (November to April). Daytime light intensity was 720-750lx. Diel plasma melatonin profiles in both November and April were similar; mean daytime levels ranged from 20 to 100pg/ml, and nighttime levels were inversely proportional to light intensity. In the control group at 0lx, plasma melatonin increased about four-fold after lights-off, ranging between 320 and 430pg/ml. Nighttime light intensity of 0.1-0.3lx halved plasma melatonin levels to 140-220pg/ml, and 50-65lx further reduced the levels to one quarter of the control group, 68-108pg/ml. Among the lit groups, daytime plasma melatonin levels were about 20-30pg/ml, significantly lower than the nocturnal levels suggesting the diel hormonal rhythm was not completely abolished. Fish grew steadily from about 1100g to 1600g between November and April, independent of light intensity (P=.67). Overall, the study demonstrated the sensitivity of pineal melatonin hormone to different light intensities in Arctic charr.
Address Department of Animal Science and Aquaculture, Dalhousie University, Agricultural Campus, Truro, NS B2N 5E3, Canada
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1095-6433 ISBN Medium
Area Expedition Conference
Notes PMID:30471350 Approved no
Call Number (up) GFZ @ kyba @ Serial 2111
Permanent link to this record
 

 
Author Nang, E.E.K.; Abuduxike, G.; Posadzki, P.; Divakar, U.; Visvalingam, N.; Nazeha, N.; Dunleavy, G.; Christopoulos, G.I.; Soh, C.-K.; Jarbrink, K.; Soljak, M.; Car, J.
Title Review of the potential health effects of light and environmental exposures in underground workplaces Type Journal Article
Year 2019 Publication Tunnelling and Underground Space Technology Abbreviated Journal Tunnelling and Underground Space Technology
Volume 84 Issue Pages 201-209
Keywords Human Health; Review
Abstract Underground workplaces are an important element in modern urban planning. As a result, an increasing but unquantified proportion of the population is being regularly exposed to them. We narratively reviewed the literature on the range of possible environmental exposures, and the possible health effects, to identify future research directions. There is a large but mainly observational research literature on likely underground exposures, including effects of artificial lighting, shift working and light at night on circadian disruptions and associated health effects. There are five studies comparing underground and aboveground environments. Shift working, artificial lighting and poor sleep quality leading to circadian disruption is one physiologic pathway. Working underground may increase exposure to these risks, and may also be associated with vitamin D deficiency, sick building syndrome, excessive noise, radon exposure, and negative psychological effects. In order to plan appropriate interventions, we need to expand our knowledge of the health effects of underground environments. Larger and longer-term studies are required to measure a range of human factors, environmental exposures and confounders. Controlled trials with health economic analyses of new lighting technologies are also required.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0886-7798 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number (up) GFZ @ kyba @ Serial 2112
Permanent link to this record