Records |
Author |
Prayag, A.S.; Najjar, R.P.; Gronfier, C. |
Title |
Melatonin suppression is exquisitely sensitive to light and primarily driven by melanopsin in humans |
Type |
Journal Article |
Year |
2019 |
Publication |
Journal of Pineal Research |
Abbreviated Journal |
J Pineal Res |
Volume |
66 |
Issue |
4 |
Pages |
e12562 |
Keywords |
Human Health; melatonin suppression; melanopic illuminance |
Abstract |
INTRODUCTION: Light elicits a range of non-visual responses in humans. Driven predominantly by intrinsically photosensitive retinal ganglion cells (ipRGCs), but also by rods and/or cones, these responses include melatonin suppression. A sigmoidal relationship has been established between melatonin suppression and light intensity, however photoreceptoral involvement remains unclear. METHODS AND RESULTS: In this study, we first modelled the relationships between alpha-opic illuminances and melatonin suppression using an extensive dataset by Brainard and colleagues. Our results show that 1) melatonin suppression is better predicted by melanopic illuminance compared to other alpha-opic illuminances, 2) melatonin suppression is predicted to occur at levels as low as ~1.5 melanopic lux (melanopsin-weighted irradiance 0.2 muW/cm(2)), 3) saturation occurs at 305 melanopic lux (melanopsin-weighted irradiance 36.6 muW/cm(2)). We then tested this melanopsin-weighted illuminance response model derived from Brainard and colleagues' data and show that it predicts equally well melatonin suppression data from our laboratory, although obtained using different intensities and exposure duration. DISCUSSION: Together, our findings suggest that melatonin suppression by monochromatic lights is predominantly driven by melanopsin, and that it can be initiated at extremely low melanopic lux levels in experimental conditions. This emphasizes the concern of the non-visual impacts of low light intensities in lighting design and light-emitting devices. This article is protected by copyright. All rights reserved. |
Address |
Lyon Neuroscience Research Center, Integrative Physiology of the Brain Arousal Systems, Waking team, Inserm UMRS 1028, CNRS UMR 5292, Universite Claude Bernard Lyon 1, Universite de Lyon, F-69000, Lyon, France |
Corporate Author |
|
Thesis |
|
Publisher |
|
Place of Publication |
|
Editor |
|
Language |
English |
Summary Language |
|
Original Title |
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
Series Volume |
|
Series Issue |
|
Edition |
|
ISSN |
0742-3098 |
ISBN |
|
Medium |
|
Area |
|
Expedition |
|
Conference |
|
Notes |
PMID:30697806 |
Approved |
no |
Call Number  |
GFZ @ kyba @ |
Serial |
2186 |
Permanent link to this record |
|
|
|
Author |
Sánchez de Miguel, A.; Kyba, C.C.M.; Aubé, M.; Zamorano, J.; Cardiel, N.; Tapia, C.; Bennie, J.; Gaston, K.J. |
Title |
Colour remote sensing of the impact of artificial light at night (I): The potential of the International Space Station and other DSLR-based platforms |
Type |
Journal Article |
Year |
2019 |
Publication |
Remote Sensing of Environment |
Abbreviated Journal |
Remote Sensing of Environment |
Volume |
224 |
Issue |
|
Pages |
92-103 |
Keywords |
Remote Sensing; Instrumentation |
Abstract |
Sensors on remote sensing satellites have provided useful tools for evaluation of the environmental impacts of nighttime artificial light pollution. However, due to their panchromatic nature, the data available from these sensors (VIIRS/DNB and DMSP/OLS) has a limited capacity accurately to assess this impact. Moreover, in some cases, recorded variations can be misleading. Until new satellite platforms and sensors are available, only nighttime images taken with DSLR cameras from the International Space Station (ISS), airplanes, balloons or other such platforms can provide the required information. Here we describe a theoretical approach using colour-colour diagrams to analyse images taken by astronauts on the ISS to estimate spatial and temporal variation in the spectrum of artificial lighting emissions. We then evaluate how this information can be used to determine effects on some key environmental indices: photopic vision, the Melatonin Suppression Index, the Star Light Index, the Induced Photosynthesis Index, production of NO2-NO radicals, energy efficiency and CO2 emissions, and Correlated Colour Temperature. Finally, we use the city of Milan as a worked example of the approach. |
Address |
|
Corporate Author |
|
Thesis |
|
Publisher |
|
Place of Publication |
|
Editor |
|
Language |
|
Summary Language |
|
Original Title |
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
Series Volume |
|
Series Issue |
|
Edition |
|
ISSN |
0034-4257 |
ISBN |
|
Medium |
|
Area |
|
Expedition |
|
Conference |
|
Notes |
|
Approved |
no |
Call Number  |
GFZ @ kyba @ |
Serial |
2189 |
Permanent link to this record |
|
|
|
Author |
Meier, J. |
Title |
Contentious Light: An Analytical Framework for Lighting Conflicts |
Type |
Journal Article |
Year |
2018 |
Publication |
International Journal of Sustainable Lighting |
Abbreviated Journal |
|
Volume |
20 |
Issue |
1 |
Pages |
62-77 |
Keywords |
Society; Lighting; Planning |
Abstract |
This paper takes into view the broad range of contemporary conflicts regarding outdoor lighting. It proposes a working-definition that allows for differentiating lighting conflicts from other forms of lighting-related contention, as well as an analytical framework that allows for the structured description of individual lighting conflicts, and the comparative analysis of multiple cases. The analytical framework was developed based on the social-scientific analysis of media reports of existing conflict cases in Europe and North America, and informed by existing knowledge from the fields of lighting and conflict studies. A central challenge for developing such a framework is dealing with the high level of contingency and complexity of lighting conflicts. The framework reduces this complexity by focusing its field of vision to those aspects that are directly related to the lighting and its contestation. For each of these aspects, it provides sets of descriptive variables that allow for describing the conflicts’ individuality in a standardized – and thus comparable – way. The framework strictly separates the regarded aspects from their judgment by the conflict parties, making it possible to contrast their views on one and the same lighting situation. A visual template supports the process of analysis. It allows for depicting individual cases in short, and for clearly identifying where perspectives differ. At the multiple-case level, the framework not only opens up possibilities for spatial and temporal comparisons of lighting conflicts and the subsequent development of typologies, but also for harnessing their potential for informing the development of more sustainable planning and policy approaches for artificial lighting. |
Address |
Department of Urban and Regional Planning, Technische Universität Berlin, Germany; josiane.meier(at)tu-berlin.de |
Corporate Author |
|
Thesis |
|
Publisher |
IJSL |
Place of Publication |
|
Editor |
|
Language |
English |
Summary Language |
English |
Original Title |
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
Series Volume |
|
Series Issue |
|
Edition |
|
ISSN |
|
ISBN |
|
Medium |
|
Area |
|
Expedition |
|
Conference |
|
Notes |
|
Approved |
no |
Call Number  |
GFZ @ kyba @ |
Serial |
2190 |
Permanent link to this record |
|
|
|
Author |
Suk, J.Y.; Walter, R.J. |
Title |
New nighttime roadway lighting documentation applied to public safety at night: A case study in San Antonio, Texas |
Type |
Journal Article |
Year |
2019 |
Publication |
Sustainable Cities and Society |
Abbreviated Journal |
Sustainable Cities and Society |
Volume |
46 |
Issue |
|
Pages |
101459 |
Keywords |
Lighting; Public Safety; Security; Planning |
Abstract |
Built environment and public safety professionals view street lighting as an important factor in improving the well-being of the community at night. Extant research that has examined the relationship between street lighting and public safety has found inconclusive or mixed results and has called for more extensive lighting metrics. Using new lighting measurement technologies and geographic information science, this study builds on previous work to demonstrate new metrics to consider when evaluating public safety, specifically crime and traffic accidents. Downtown San Antonio, Texas is used as a case study to explore illuminance levels on roadways and the driver’s eye, and how these metrics can be used to understand the lighting characteristics of where crime and traffic accidents occur. The findings indicate that the central downtown district in San Antonio has higher illuminance levels than the existing roadway lighting guidelines while the residential downtown neighborhoods have insufficient light levels. Statistical analysis reveals that roadway illuminance levels are higher in areas where no crime occurred and driver’s eye illuminance levels are lower in areas with no traffic accidents. The findings prove the usefulness of new lighting documentation techniques and support the importance of considering illuminance metrics when assessing crime and traffic accidents at night. |
Address |
|
Corporate Author |
|
Thesis |
|
Publisher |
|
Place of Publication |
|
Editor |
|
Language |
|
Summary Language |
|
Original Title |
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
Series Volume |
|
Series Issue |
|
Edition |
|
ISSN |
2210-6707 |
ISBN |
|
Medium |
|
Area |
|
Expedition |
|
Conference |
|
Notes |
|
Approved |
no |
Call Number  |
GFZ @ kyba @ |
Serial |
2191 |
Permanent link to this record |
|
|
|
Author |
Wang, X.; Liu, G.; Coscieme, L.; Giannetti, B.F.; Hao, Y.; Zhang, Y.; Brown, M.T. |
Title |
Study on the emergy-based thermodynamic geography of the Jing-Jin-Ji region: Combined multivariate statistical data with DMSP-OLS nighttime lights data |
Type |
Journal Article |
Year |
2019 |
Publication |
Ecological Modelling |
Abbreviated Journal |
Ecological Modelling |
Volume |
397 |
Issue |
|
Pages |
1-15 |
Keywords |
Remote Sensing |
Abstract |
Emergy analysis is one of the ecological thermodynamics methods. With a specific set of indicators, it is proved to be highly informative for sustainability assessment of national/regional economies. However, a large amount of data needed for its calculation are from official statistical data by administrative divisions. The spatialization of emergy in early researches were limited to the administrative boundaries. The emergy inside an administrative boundary renders a single value, which hides plenty of information for more precise regional planning.
This study develops a new methodology for mapping the spatial distribution of emergy density of a region. The renewable resource distribution can be mapped based on latest geospatial datasets and GIS technology, instead of solely relying on statistics and yearbooks data. Besides, a new spatialization method of non-renewable emergy based on DMSP-OLS nighttime lights data is proposed. Combined with the radiation calibration data, the problem of light saturation of DMSP-OLS nighttime lights data was solved to improve the emergy spatial detail of city centers. With a case study of Jing-Jin-Ji region, results showed that this method could generate a high-resolution map of emergy use, and depict human disturbance to the environment in a more precise manner. This may provide supportive information for more precise land use planning, strategic layout and policy regulation, and is helpful for regional sustainable development. |
Address |
|
Corporate Author |
|
Thesis |
|
Publisher |
|
Place of Publication |
|
Editor |
|
Language |
|
Summary Language |
|
Original Title |
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
Series Volume |
|
Series Issue |
|
Edition |
|
ISSN |
0304-3800 |
ISBN |
|
Medium |
|
Area |
|
Expedition |
|
Conference |
|
Notes |
|
Approved |
no |
Call Number  |
GFZ @ kyba @ |
Serial |
2192 |
Permanent link to this record |