toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Touitou, Y.; Reinberg, A.; Touitou, D. url  doi
openurl 
  Title Association between light at night, melatonin secretion, sleep deprivation, and the internal clock: Health impacts and mechanisms of circadian disruption Type Journal Article
  Year 2017 Publication Life Sciences Abbreviated Journal Life Sci  
  Volume 173 Issue Pages 94-106  
  Keywords Review; Human Health  
  Abstract Exposure to Artificial Light At Night (ALAN) results in a disruption of the circadian system, which is deleterious to health. In industrialized countries, 75% of the total workforce is estimated to have been involved in shift work and night work. Epidemiologic studies, mainly of nurses, have revealed an association between sustained night work and a 50-100% higher incidence of breast cancer. The potential and multifactorial mechanisms of the effects include the suppression of melatonin secretion by ALAN, sleep deprivation, and circadian disruption. Shift and/or night work generally decreases the time spent sleeping, and it disrupts the circadian time structure. In the long run, this desynchronization is detrimental to health, as underscored by a large number of epidemiological studies that have uncovered elevated rates of several diseases, including cancer, diabetes, cardiovascular risks, obesity, mood disorders and age-related macular degeneration. It amounts to a public health issue in the light of the very substantial number of individuals involved. The IARC has classified shift work in group 2A of “probable carcinogens to humans” since “they involve a circadian disorganization”. Countermeasures to the effects of ALAN, such as melatonin, bright light, or psychotropic drugs, have been proposed as a means to combat circadian clock disruption and improve adaptation to shift and night work. We review the evidence for the ALAN impacts on health. Furthermore, we highlight the importance of an in-depth mechanistic understanding to combat the detrimental properties of exposure to ALAN and develop strategies of prevention.  
  Address UHSA – Groupe Hospitalier Paul Guiraud, 54, avenue de la Republique, 94806 Villejuif, France  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0024-3205 ISBN Medium  
  Area Expedition Conference  
  Notes PMID:28214594 Approved no  
  Call Number (up) GFZ @ kyba @ Serial 2455  
Permanent link to this record
 

 
Author Heo, J.-Y.; Kim, K.; Fava, M.; Mischoulon, D.; Papakostas, G.I.; Kim, M.-J.; Kim, D.J.; Chang, K.-A.J.; Oh, Y.; Yu, B.-H.; Jeon, H.J. url  doi
openurl 
  Title Effects of smartphone use with and without blue light at night in healthy adults: A randomized, double-blind, cross-over, placebo-controlled comparison Type Journal Article
  Year 2017 Publication Journal of Psychiatric Research Abbreviated Journal J Psychiatr Res  
  Volume 87 Issue Pages 61-70  
  Keywords Human Health  
  Abstract Smartphones deliver light to users through Light Emitting Diode (LED) displays. Blue light is the most potent wavelength for sleep and mood. This study investigated the immediate effects of smartphone blue light LED on humans at night. We investigated changes in serum melatonin levels, cortisol levels, body temperature, and psychiatric measures with a randomized, double-blind, cross-over, placebo-controlled design of two 3-day admissions. Each subject played smartphone games with either conventional LED or suppressed blue light from 7:30 to 10:00PM (150 min). Then, they were readmitted and conducted the same procedure with the other type of smartphone. Serum melatonin levels were measured in 60-min intervals before, during and after use of the smartphones. Serum cortisol levels and body temperature were monitored every 120 min. The Profile of Mood States (POMS), Epworth Sleepiness Scale (ESS), Fatigue Severity Scale (FSS), and auditory and visual Continuous Performance Tests (CPTs) were administered. Among the 22 participants who were each admitted twice, use of blue light smartphones was associated with significantly decreased sleepiness (Cohen's d = 0.49, Z = 43.50, p = 0.04) and confusion-bewilderment (Cohen's d = 0.53, Z = 39.00, p = 0.02), and increased commission error (Cohen's d = -0.59, t = -2.64, p = 0.02). Also, users of blue light smartphones experienced a longer time to reach dim light melatonin onset 50% (2.94 vs. 2.70 h) and had increases in body temperature, serum melatonin levels, and cortisol levels, although these changes were not statistically significant. Use of blue light LED smartphones at night may negatively influence sleep and commission errors, while it may not be enough to lead to significant changes in serum melatonin and cortisol levels.  
  Address Department of Psychiatry, Depression Center, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, South Korea; Depression Clinical and Research Program, Massachusetts General Hospital, Harvard Medical School, Boston, USA; Department of Health Sciences & Technology, Department of Medical Device Management and Research, and Department of Clinical Research Design and Evaluation, Samsung Advanced Institute for Health Sciences & Technology (SAIHST), Sungkyunkwan University, Seoul, South Korea. Electronic address: jeonhj@skku.edu  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0022-3956 ISBN Medium  
  Area Expedition Conference  
  Notes PMID:28017916 Approved no  
  Call Number (up) GFZ @ kyba @ Serial 2456  
Permanent link to this record
 

 
Author Alzahrani, H.S.; Khuu, S.K.; Roy, M. url  doi
openurl 
  Title Modelling the effect of commercially available blue-blocking lenses on visual and non-visual functions Type Journal Article
  Year 2019 Publication Clinical & Experimental Optometry Abbreviated Journal Clin Exp Optom  
  Volume in press Issue Pages  
  Keywords Human Health; blue-blocking lenses; non-visual functions; transmittance; visual functions  
  Abstract BACKGROUND: Blue-blocking lenses (BBLs) are marketed as providing retinal protection from acute and cumulative exposure to blue light over time. The selective reduction in visible wavelengths transmitted through BBLs is known to influence the photosensitivity of retinal photoreceptors, which affects both visual and non-visual functions. This study measured the spectral transmittance of BBLs and evaluated their effect on blue perception, scotopic vision, circadian rhythm, and protection from photochemical retinal damage. METHODS: Seven different types of BBLs from six manufacturers and untinted control lenses with three different powers (+2.00 D, -2.00 D and Plano) were evaluated. The whiteness index of BBLs used in this study was calculated using Commission International de l'Eclairage (CIE) Standard Illuminates D65, and CIE 1964 Standard with a 2 degrees Observer. The protective qualities of BBLs and their effect on blue perception, scotopic vision, and circadian rhythm were evaluated based on their spectral transmittance, which was measured with a Cary 5,000 UV-Vis-NIR spectrophotometer. RESULTS: BBLs were found to reduce blue light (400-500 nm) by 6-43 per cent, providing significant protection from photochemical retinal damage compared to control lenses (p </= 0.05). All BBLs were capable of reducing the perception of blue colours, scotopic sensitivities and circadian sensitivities by 5-36 per cent, 5-24 per cent, and 4-27 per cent, respectively depending on the brand and power of the lens. CONCLUSION: BBLs can provide some protection to the human eye from photochemical retinal damage by reducing a portion of blue light that may affect visual and non-visual performances, such as those critical to scotopic vision, blue perception, and circadian rhythm.  
  Address School of Optometry and Vision Science, The University of New South Wales, Sydney, Australia  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0816-4622 ISBN Medium  
  Area Expedition Conference  
  Notes PMID:31441122 Approved no  
  Call Number (up) GFZ @ kyba @ Serial 2654  
Permanent link to this record
 

 
Author Nagare, R.; Plitnick, B.; Figueiro, M. url  doi
openurl 
  Title Effect of exposure duration and light spectra on nighttime melatonin suppression in adolescents and adults Type Journal Article
  Year 2018 Publication Lighting Research & Technology Abbreviated Journal Lighting Research & Technology  
  Volume 51 Issue 4 Pages 530-543  
  Keywords Human Health  
  Abstract This study investigated how light exposure duration affects melatonin suppression, a well-established marker of circadian phase, and whether adolescents (13–18 years) are more sensitive to short-wavelength (blue) light than adults (32–51 years). Twenty-four participants (12 adolescents, 12 adults) were exposed to three lighting conditions during successive 4-h study nights that were separated by at least one week. In addition to a dim light (<5 lux) control, participants were exposed to two light spectra (warm (2700 K) and cool (5600 K)) delivering a circadian stimulus of 0.25 at eye level. Repeated measures analysis of variance revealed a significant main effect of exposure duration, indicating that a longer duration exposure suppressed melatonin to a greater degree. The analysis further revealed a significant main effect of spectrum and a significant interaction between spectrum and participant age. For the adolescents, but not the adults, melatonin suppression was significantly greater after exposure to the 5600 K intervention (43%) compared to the 2700 K intervention (29%), suggesting an increased sensitivity to short-wavelength radiation. These results will be used to extend the model of human circadian phototransduction to incorporate factors such as exposure duration and participant age to better predict effective circadian stimulus.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1477-1535 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number (up) GFZ @ kyba @ Serial 1821  
Permanent link to this record
 

 
Author Posch, T.; Binder, F.; Puschnig, J. url  doi
openurl 
  Title Systematic measurements of the night sky brightness at 26 locations in Eastern Austria Type Journal Article
  Year 2018 Publication Journal of Quantitative Spectroscopy and Radiative Transfer Abbreviated Journal Journal of Quantitative Spectroscopy and Radiative Transfer  
  Volume 211 Issue Pages 144-165  
  Keywords Skyglow  
  Abstract We present an analysis of the zenithal night sky brightness (henceforth: NSB) measurements at 26 locations in Eastern Austria focussing on the years 2015-2016, both during clear and cloudy to overcast nights. All measurements have been performed with ’Sky Quality Meters’ (SQMs). For some of the locations, simultaneous aerosol content measurements are available, such that we were able to find a correlation between light pollution and air pollution at those stations. For all locations, we examined the circalunar periodicity of the NSB, seasonal variations as well as long-term trends in the recorded light pollution. The latter task proved difficult, however, due to varying meteorological conditions, potential detector ’aging’ and other effects. For several remote locations, a darkening of the overcast night sky by up to 1 magnitude is recorded – indicating a very low level of light pollution –, while for the majority of the examined locations, a brightening of the night sky by up to a factor of 15 occurs due to clouds. We present suitable ways to plot and analyze huge long-term NSB datasets, such as mean-NSB histograms, circalunar, annual (’hourglass’) and cumulative (’jellyfish’) plots. We show that five of the examined locations reach sufficiently low levels of light pollution – with NSB values down to 21.8 magSQM/arcsec2 – as to allow the establishment of dark sky reserves, even to the point of reaching the ’gold tier’ defined by the International Dark Sky Association. Based on the ’hourglass’ plots, we find a strong circalunar periodicity of the NSB in small towns and villages ( <  5.000 inhabitants), with amplitudes of of up to 5 magnitudes. Using the ’jellyfish’ plots, on the other hand, we demonstrate that the examined city skies brighten by up to 3 magnitudes under cloudy conditions, which strongly dominate in those cumulative data representations. Nocturnal gradients of the NSB of 0.0–0.14 magSQM/arcsec2/hr are found. The long-term development of the night sky brightness was evaluated based on the 2012-17 data for one of our sites, possibly indicating a slight ( 2%) decrease of the mean zenithal NSB at the Vienna University Observatory.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0022-4073 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number (up) GFZ @ kyba @ Serial 1825  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: