|   | 
Details
   web
Records
Author Ou, J.; Liu, X.; Li, X.; Li, M.; Li, W.
Title Evaluation of NPP-VIIRS Nighttime Light Data for Mapping Global Fossil Fuel Combustion CO2 Emissions: A Comparison with DMSP-OLS Nighttime Light Data Type Journal Article
Year 2015 Publication PloS one Abbreviated Journal PLoS One
Volume 10 Issue 9 Pages (down) e0138310
Keywords Remote Sensing
Abstract Recently, the stable light products and radiance calibrated products from Defense Meteorological Satellite Program's (DMSP) Operational Linescan System (OLS) have been useful for mapping global fossil fuel carbon dioxide (CO2) emissions at fine spatial resolution. However, few studies on this subject were conducted with the new-generation nighttime light data from the Visible Infrared Imaging Radiometer Suite (VIIRS) sensor on the Suomi National Polar-orbiting Partnership (NPP) Satellite, which has a higher spatial resolution and a wider radiometric detection range than the traditional DMSP-OLS nighttime light data. Therefore, this study performed the first evaluation of the potential of NPP-VIIRS data in estimating the spatial distributions of global CO2 emissions (excluding power plant emissions). Through a disaggregating model, three global emission maps were then derived from population counts and three different types of nighttime lights data (NPP-VIIRS, the stable light data and radiance calibrated data of DMSP-OLS) for a comparative analysis. The results compared with the reference data of land cover in Beijing, Shanghai and Guangzhou show that the emission areas of map from NPP-VIIRS data have higher spatial consistency of the artificial surfaces and exhibit a more reasonable distribution of CO2 emission than those of other two maps from DMSP-OLS data. Besides, in contrast to two maps from DMSP-OLS data, the emission map from NPP-VIIRS data is closer to the Vulcan inventory and exhibits a better agreement with the actual statistical data of CO2 emissions at the level of sub-administrative units of the United States. This study demonstrates that the NPP-VIIRS data can be a powerful tool for studying the spatial distributions of CO2 emissions, as well as the socioeconomic indicators at multiple scales.
Address School of Geography and Planning, and Guangdong Key Laboratory for Urbanization and Geo-simulation, Sun Yat-sen University, Guangzhou, China
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1932-6203 ISBN Medium
Area Expedition Conference
Notes PMID:26390037; PMCID:PMC4577086 Approved no
Call Number GFZ @ kyba @ Serial 2272
Permanent link to this record
 

 
Author Ardavani, O.; Zerefos, S.; Doulos, L.T.
Title Redesigning the exterior lighting as part of the urban landscape: The role of transgenic bioluminescent plants in mediterranean urban and suburban lighting environments Type Journal Article
Year 2020 Publication Journal of Cleaner Production Abbreviated Journal Journal of Cleaner Production
Volume 242 Issue Pages (down) 118477
Keywords Plants; Lighting
Abstract This research discusses the feasibility of replacing or supporting artificial lighting with Transgenic Bioluminescent Plants (TBP), as a means of minimizing light pollution, reducing electrical energy consumption and de-carbonizing urban and suburban outdoor environments, creating sustainable conditions and enriching the quality of life. Until now, no information is given about the light output of any TBPs and the question “Are the TBPs capable of producing the necessary lighting levels for exterior lighting?” is unanswered. For this reason, a new methodology is proposed for selecting and analyzing the lighting output potential of transgenic plants ted for specific climatic conditions. This methodology considers growth and reduction factors, as well as a formulae for estimating the plants’ luminous output by performing light measurements. Results show that transgenic plants in medium growth can emit a median luminous flux of up to 57 lm, a value that can definitely support low lighting requirements when used in large numbers of plants. From the lighting measurements and calculations performed in this research, the light output of the TBPs for a typical road with 5m width was found equal to 2lx. The amount of plants required was 40 at each side of the road for every 30m of streets with P6 road class. The results show that the use of bioluminescent plants can actually contribute to the reduction of energy consumption, concerning only the lighting criterium, thus creating an enormous opportunity for a new state-of- the-art market and research that could potentially minimize CO2 emissions and light pollution, improve urban and suburban microclimate, mitigate the effects of climate change, as well as provide an alternative means of lighting affecting both outdoor lighting design and landscape planning in suburban and urban settings. Moreover, further research should be applied considering also other possible ecological impacts before applying TBPs for exterior lighting applications.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0959-6526 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number GFZ @ kyba @ Serial 2711
Permanent link to this record
 

 
Author Russart, K.L.G.; Chbeir, S.A.; Nelson, R.J.; Magalang, U.J.
Title Light at night exacerbates metabolic dysfunction in a polygenic mouse model of type 2 diabetes mellitus Type Journal Article
Year 2019 Publication Life Sciences Abbreviated Journal Life Sci
Volume in press Issue Pages (down) 116574
Keywords Animals
Abstract AIMS: Electric lighting is beneficial to modern society; however, it is becoming apparent that light at night (LAN) is not without biological consequences. Several studies have reported negative effects of LAN on health and behavior in humans and nonhuman animals. Exposure of non-diabetic mice to dim LAN impairs glucose tolerance, whereas a return to dark nights (LD) reverses this impairment. We predicted that exposure to LAN would exacerbate the metabolic abnormalities in TALLYHO/JngJ (TH) mice, a polygenic model of type 2 diabetes mellitus (T2DM). MATERIALS AND METHODS: We exposed 7-week old male TH mice to either LD or LAN for 8-10weeks in two separate experiments. After 8weeks of light treatment, we conducted intraperitoneal glucose tolerance testing (ipGTT) followed by intraperitoneal insulin tolerance testing (ipITT). In Experiment 1, all mice were returned to LD for 4weeks, and ipITT was repeated. KEY FINDINGS: The major results of this study are i) LAN exposure for 8weeks exacerbates glucose intolerance and insulin resistance ii) the effects of LAN on insulin resistance are reversed upon return to LD, iii) LAN exposure results in a greater increase in body weight compared to LD exposure, iv) LAN increases the incidence of mice developing overt T2DM, and v) LAN exposure decreases survival of mice with T2DM. SIGNIFICANCE: In conclusion, LAN exacerbated metabolic abnormalities in a polygenic mouse model of T2DM, and these effects were reversed upon return to dark nights. The applicability of these findings to humans with T2DM needs to be determined.
Address Department of Neuroscience, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA; Department of Internal Medicine, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0024-3205 ISBN Medium
Area Expedition Conference
Notes PMID:31207311 Approved no
Call Number GFZ @ kyba @ Serial 2549
Permanent link to this record
 

 
Author Molcan, L.; Sutovska, H.; Okuliarova, M.; Senko, T.; Krskova, L.; Zeman, M.
Title Dim light at night attenuates circadian rhythms in the cardiovascular system and suppresses melatonin in rats Type Journal Article
Year 2019 Publication Life Sciences Abbreviated Journal Life Sci
Volume 231 Issue Pages (down) 116568
Keywords Animals
Abstract AIMS: Cardiovascular parameters exhibit significant 24-h variability, which is coordinated by the suprachiasmatic nucleus (SCN), and light/dark cycles control SCN activity. We aimed to study the effects of light at night (ALAN; 1-2lx) on cardiovascular system control in normotensive rats. MAIN METHODS: Heart rate (HR) and blood pressure (BP) were measured by telemetry during five weeks of ALAN exposure. From beat-to-beat telemetry data, we evaluated spontaneous baroreflex sensitivity (sBRS). After 2 (A2) and 5 (A5) weeks of ALAN, plasma melatonin concentrations and the response of BP and HR to norepinephrine administration were measured. The expression of endothelial nitric oxide synthase (eNOS) and endothelin-1 was determined in the aorta. Spontaneous exploratory behaviour was evaluated in an open-field test. KEY FINDINGS: ALAN significantly suppressed the 24-h variability in the HR, BP, and sBRS after A2, although the parameters were partially restored after A5. The daily variability in the BP response to norepinephrine was reduced after A2 and restored after A5. ALAN increased the BP response to norepinephrine compared to the control after A5. Increased eNOS expression was found in arteries after A2 but not A5. Endothelin-1 expression was not affected by ALAN. Plasma melatonin levels were suppressed after A2 and A5. Spontaneous exploratory behaviour was reduced. SIGNIFICANCE: ALAN decreased plasma melatonin and the 24-h variability in the haemodynamic parameters and increased the BP response to norepinephrine. A low intensity ALAN can suppress circadian control of the cardiovascular system with negative consequences on the anticipation of a load.
Address Department of Animal Physiology and Ethology, Faculty of Natural Sciences, Comenius University, Bratislava, Slovakia
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0024-3205 ISBN Medium
Area Expedition Conference
Notes PMID:31202842 Approved no
Call Number GFZ @ kyba @ Serial 2548
Permanent link to this record
 

 
Author Grauer, A.D.; Grauer, P.A.; Davies, N.; Davies, G.
Title Impact of Space Weather on the Natural Night Sky Type Journal Article
Year 2019 Publication Publications of the Astronomical Society of the Pacific Abbreviated Journal PASP
Volume 131 Issue 1005 Pages (down) 114508
Keywords Darkness; night sky brightness; United States; New Zealand; Sun; space weather; solar wind
Abstract In 2018, Solar Cycle 24 entered a deep solar minimum. During this period, we collected night sky brightness data at Cosmic Campground International Dark Sky Sanctuary (CCIDSS) in the USA (2018 September 4–2019 January 4) and at Aotea/Great Barrier Island International Dark Sky Sanctuary (AGBIIDSS) in New Zealand (2018 March 26–August 31. These sites have artificial-light-pollution-free natural night skies. The equipment employed are identical Unihedron SQM-LU-DL meters, used as single-channel differential photometers, to scan the sky as Earth rotates on its axis. We have developed new analysis techniques which select those data points which are uninfluenced by Sun, Moon, or clouds to follow brightness changes at selected points on the celestial sphere and to measure the brightness of the airglow above its quiescent level. The 2018 natural night sky was measured to change in brightness by approximately 0.9 mag arcsec−2 at both locations. Preliminary results indicate the modulations of the light curves (brightness versus R.A.) we observed are related in complex ways to elements of space weather conditions in the near-Earth environment. In particular, episodes of increased night sky brightness are observed to be contemporaneous with geomagnetic activity, increases in mean solar wind speed, and some solar proton/electron fluence events. Charged particles in the solar wind take days to reach near-Earth environment after a coronal hole is observed to be facing in our direction. Use of this information could make it possible to predict increases in Earth’s natural night sky brightness several days in advance. What we have learned during this solar minimum leads us to search for other solar driven changes in night sky brightness as the Sun begins to move into solar maximum conditions.
Address Catalina Sky Survey, Lunar and Planetary Laboratory, University of Arizona, USA; algrauer(at)me.com
Corporate Author Thesis
Publisher Astronomical Society of the Pacific Place of Publication Editor
Language English Summary Language English Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0004-6280 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number IDA @ john @ Serial 2696
Permanent link to this record