|   | 
Details
   web
Records
Author Haraguchi, S.; Kamata, M.; Tokita, T.; Tashiro, K.-I.; Sato, M.; Nozaki, M.; Okamoto-Katsuyama, M.; Shimizu, I.; Han, G.; Chowdhury, V.S.; Lei, X.-F.; Miyazaki, T.; Kim-Kaneyama, J.-R.; Nakamachi, T.; Matsuda, K.; Ohtaki, H.; Tokumoto, T.; Tachibana, T.; Miyazaki, A.; Tsutsui, K.
Title Light-at-night exposure affects brain development through pineal allopregnanolone-dependent mechanisms Type Journal Article
Year 2019 Publication ELife Abbreviated Journal Elife
Volume 8 Issue Pages (down) e45306
Keywords Animals; chicken; neuroscience; Circadian disruption; pineal allopregnanolone; cell death
Abstract The molecular mechanisms by which environmental light conditions affect cerebellar development are incompletely understood. We showed that circadian disruption by light-at-night induced Purkinje cell death through pineal allopregnanolone (ALLO) activity during early life in chicks. Light-at-night caused the loss of diurnal variation of pineal ALLO synthesis during early life and led to cerebellar Purkinje cell death, which was suppressed by a daily injection of ALLO. The loss of diurnal variation of pineal ALLO synthesis induced not only reduction in pituitary adenylate cyclase-activating polypeptide (PACAP), a neuroprotective hormone, but also transcriptional repression of the cerebellar Adcyap1 gene that produces PACAP, with subsequent Purkinje cell death. Taken together, pineal ALLO mediated the effect of light on early cerebellar development in chicks.
Address Department of Biology, Waseda University, Tokyo, Japan; shogo.haraguchi(at)gmail.com
Corporate Author Thesis
Publisher eLife Place of Publication Editor
Language English Summary Language English Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2050-084X ISBN Medium
Area Expedition Conference
Notes PMID:31566568 Approved no
Call Number GFZ @ kyba @ Serial 2694
Permanent link to this record
 

 
Author Walker, W.H. 2nd; Borniger, J.C.; Gaudier-Diaz, M.M.; Hecmarie Melendez-Fernandez, O.; Pascoe, J.L.; Courtney DeVries, A.; Nelson, R.J.
Title Acute exposure to low-level light at night is sufficient to induce neurological changes and depressive-like behavior Type Journal Article
Year 2019 Publication Molecular Psychiatry Abbreviated Journal Mol Psychiatry
Volume Issue Pages (down) s41380-019-0430-4
Keywords Human health; physiology; brain
Abstract The advent and wide-spread adoption of electric lighting over the past century has profoundly affected the circadian organization of physiology and behavior for many individuals in industrialized nations; electric lighting in homes, work environments, and public areas have extended daytime activities into the evening, thus, increasing night-time exposure to light. Although initially assumed to be innocuous, chronic exposure to light at night (LAN) is now associated with increased incidence of cancer, metabolic disorders, and affective problems in humans. However, little is known about potential acute effects of LAN. To determine whether acute exposure to low-level LAN alters brain function, adult male, and female mice were housed in either light days and dark nights (LD; 14 h of 150 lux:10 h of 0 lux) or light days and low level light at night (LAN; 14 h of 150 lux:10 h of 5 lux). Mice exposed to LAN on three consecutive nights increased depressive-like responses compared to mice housed in dark nights. In addition, female mice exposed to LAN increased central tendency in the open field. LAN was associated with reduced hippocampal vascular endothelial growth factor-A (VEGF-A) in both male and female mice, as well as increased VEGFR1 and interleukin-1beta mRNA expression in females, and reduced brain derived neurotrophic factor mRNA in males. Further, LAN significantly altered circadian rhythms (activity and temperature) and circadian gene expression in female and male mice, respectively. Altogether, this study demonstrates that acute exposure to LAN alters brain physiology and can be detrimental to well-being in otherwise healthy individuals.
Address Department of Rockefeller Neuroscience Institute, West Virginia University, Morgantown, WV, 26506, USA
Corporate Author Thesis
Publisher Nature Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1359-4184 ISBN Medium
Area Expedition Conference
Notes PMID:31138889 Approved no
Call Number IDA @ john @ Serial 2509
Permanent link to this record
 

 
Author Walker, W.H. 2nd; Borniger, J.C.; Gaudier-Diaz, M.M.; Hecmarie Melendez-Fernandez, O.; Pascoe, J.L.; Courtney DeVries, A.; Nelson, R.J.
Title Acute exposure to low-level light at night is sufficient to induce neurological changes and depressive-like behavior Type Journal Article
Year 2019 Publication Molecular Psychiatry Abbreviated Journal Mol Psychiatry
Volume Issue Pages (down) s41380
Keywords Animals; mouse models; mood disorders; Human Health
Abstract The advent and wide-spread adoption of electric lighting over the past century has profoundly affected the circadian organization of physiology and behavior for many individuals in industrialized nations; electric lighting in homes, work environments, and public areas have extended daytime activities into the evening, thus, increasing night-time exposure to light. Although initially assumed to be innocuous, chronic exposure to light at night (LAN) is now associated with increased incidence of cancer, metabolic disorders, and affective problems in humans. However, little is known about potential acute effects of LAN. To determine whether acute exposure to low-level LAN alters brain function, adult male, and female mice were housed in either light days and dark nights (LD; 14 h of 150 lux:10 h of 0 lux) or light days and low level light at night (LAN; 14 h of 150 lux:10 h of 5 lux). Mice exposed to LAN on three consecutive nights increased depressive-like responses compared to mice housed in dark nights. In addition, female mice exposed to LAN increased central tendency in the open field. LAN was associated with reduced hippocampal vascular endothelial growth factor-A (VEGF-A) in both male and female mice, as well as increased VEGFR1 and interleukin-1beta mRNA expression in females, and reduced brain derived neurotrophic factor mRNA in males. Further, LAN significantly altered circadian rhythms (activity and temperature) and circadian gene expression in female and male mice, respectively. Altogether, this study demonstrates that acute exposure to LAN alters brain physiology and can be detrimental to well-being in otherwise healthy individuals.
Address Department of Rockefeller Neuroscience Institute, West Virginia University, Morgantown, WV, 26506, USA
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1359-4184 ISBN Medium
Area Expedition Conference
Notes PMID:31138889; PMCID:PMC6881534 Approved no
Call Number GFZ @ kyba @ Serial 2768
Permanent link to this record
 

 
Author Wang, X.; Cheng, H.
Title Study on the Temporal and Spatial Pattern Differences of Chinese Light Curl Based on DMSP/OLS Type Journal Article
Year 2019 Publication IOP Conference Series: Earth and Environmental Science Abbreviated Journal IOP Conf. Ser.: Earth Environ. Sci.
Volume 310 Issue Pages (down) 032072
Keywords Remote Sensing
Abstract Nighttime light data can detect surface gleams that can intuitively reflect human socioeconomic activity.This paper uses the DMSP/OLS nighttime lighting data from 2001 to 2007 to analyze the coupling relationship between regional economic development and nighttime light intensity in China using regression model.The results show that the brightest areas of nighttime light are mainly concentrated in the Beijing-Tianjin-Hebei region, the Yangtze River Delta region, and the Pearl River Delta region. With the change of theyear, the brightness of the three regions is brighter year by year, indicating that the economy is more and more developed.The linear regression model of total brightness and GDP of regional light: Y=792.218+0.024X, linear slope is 0.024, indicating a positive correlation trend.The provinces and cities with the highest total brightness of the provinces and cities are Guangdong Province, Shandong Province, and Jiangsu Province, and the lowest provinces and cities are Qinghai Province and Tibet Autonomous Region.The total brightness of regional lights in China's provinces and cities is well coupled with GDP. The total brightness of regional lights in all provinces and cities is weakened from east to west. The brightness of the 11 provinces in the eastern region is the strongest, including Beijing, Tianjin, Hebei, Liaoning, Shanghai, and Jiangsu, Zhejiang, Fujian, Shandong, Guangdong, Hainan Province.The second most powerful lighting is the eight provinces in the central region including Shanxi, Jilin, Heilongjiang, Anhui, Jiangxi, Henan, Hubei, and Hunan.The weakest lighting is in the western regions of Sichuan, Chongqing, Guizhou, Yunnan, Tibet, Shaanxi, Gansu, Qinghai, Ningxia, Xinjiang, Guangxi, Inner Mongolia and other provinces (cities).In the east of the Hu Huanyong line, the nighttime lighting is higher than the west of the Hu Huanyong line.The eastern part of China's seven geographical divisions (Shanghai, Jiangsu, Zhejiang, Anhui, Jiangxi, Shandong, Fujian, and Taiwan) has the brightest night lights.The northwestern region (Shaanxi, Gansu, Qinghai, Ningxia Hui Autonomous Region, Xinjiang Uygur Autonomous Region, and Inner Mongolia Autonomous Region) has a weak night light.The brightness information of nighttime remote sensing data selected in this study can reflect the level of regional economic development.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1755-1315 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number GFZ @ kyba @ Serial 2670
Permanent link to this record
 

 
Author Burggraaff, O., Schmidt, N., Zamorano, J., Pauly, K., Pascual, S., Tapia, C., Spyrakos, E., & Snik, F.
Title Standardized spectral and radiometric calibration of consumer cameras Type Journal Article
Year 2019 Publication Optical Express Abbreviated Journal
Volume 27 Issue 14 Pages (down) 19075-19101
Keywords Instrumentation
Abstract Consumer cameras, particularly onboard smartphones and UAVs, are now commonly used as scientific instruments. However, their data processing pipelines are not optimized for quantitative radiometry and their calibration is more complex than that of scientific cameras. The lack of a standardized calibration methodology limits the interoperability between devices and, in the ever-changing market, ultimately the lifespan of projects using them. We present a standardized methodology and database (SPECTACLE) for spectral and radiometric calibrations of consumer cameras, including linearity, bias variations, read-out noise, dark current, ISO speed and gain, flat-field, and RGB spectral response. This includes golden standard ground-truth methods and do-it-yourself methods suitable for non-experts. Applying this methodology to seven popular cameras, we found high linearity in RAW but not JPEG data, inter-pixel gain variations >400% correlated with large-scale bias and read-out noise patterns, non-trivial ISO speed normalization functions, flat-field correction factors varying by up to 2.79 over the field of view, and both similarities and differences in spectral response. Moreover, these results differed wildly between camera models, highlighting the importance of standardization and a centralized database.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number IDA @ intern @ Serial 2652
Permanent link to this record