toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Babadi, S.; Ramirez-Inguiez, R.; Boutaleb, T.; Mallick, T. url  doi
openurl 
  Title Producing uniform illumination within a rectangular area by using a nonimaging optic Type Journal Article
  Year 2018 Publication Applied Optics Abbreviated Journal Appl. Opt.  
  Volume 57 Issue 31 Pages (down) 9357  
  Keywords Lighting  
  Abstract This paper proposes a new design method to create a novel optical element to generate uniform illumination within a rectangular area. Based on this model, an illuminated area is irradiated by two sets of rays; the first one irradiates the target plane after refraction from the top section of the lens, and the second one irradiates from the reflection at the side profile of the lens and then from refraction at the top part of the lens. The results show that a uniformity of over 90% can be achieved.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1559-128X ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number GFZ @ kyba @ Serial 2046  
Permanent link to this record
 

 
Author Voigt, C.C.; Rehnig, K.; Lindecke, O.; Petersons, G. url  doi
openurl 
  Title Migratory bats are attracted by red light but not by warm-white light: Implications for the protection of nocturnal migrants Type Journal Article
  Year 2018 Publication Ecology and Evolution Abbreviated Journal Ecol Evol  
  Volume 8 Issue 18 Pages (down) 9353-9361  
  Keywords Animals  
  Abstract The replacement of conventional lighting with energy-saving light emitting diodes (LED) is a worldwide trend, yet its consequences for animals and ecosystems are poorly understood. Strictly nocturnal animals such as bats are particularly sensitive to artificial light at night (ALAN). Past studies have shown that bats, in general, respond to ALAN according to the emitted light color and that migratory bats, in particular, exhibit phototaxis in response to green light. As red and white light is frequently used in outdoor lighting, we asked how migratory bats respond to these wavelength spectra. At a major migration corridor, we recorded the presence of migrating bats based on ultrasonic recorders during 10-min light-on/light-off intervals to red or warm-white LED, interspersed with dark controls. When the red LED was switched on, we observed an increase in flight activity for Pipistrellus pygmaeus and a trend for a higher activity for Pipistrellus nathusii. As the higher flight activity of bats was not associated with increased feeding, we rule out the possibility that bats foraged at the red LED light. Instead, bats may have flown toward the red LED light source. When exposed to warm-white LED, general flight activity at the light source did not increase, yet we observed an increased foraging activity directly at the light source compared to the dark control. Our findings highlight a response of migratory bats toward LED light that was dependent on light color. The most parsimonious explanation for the response to red LED is phototaxis and for the response to warm-white LED foraging. Our findings call for caution in the application of red aviation lighting, particularly at wind turbines, as this light color might attract bats, leading eventually to an increased collision risk of migratory bats at wind turbines.  
  Address Faculty of Veterinary Medicine Latvia University of Life Sciences and Technologies Jelgava Latvia  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2045-7758 ISBN Medium  
  Area Expedition Conference  
  Notes PMID:30377506; PMCID:PMC6194273 Approved no  
  Call Number NC @ ehyde3 @ Serial 2074  
Permanent link to this record
 

 
Author Nitta, Y.; Matsui, S.; Kato, Y.; Kaga, Y.; Sugimoto, K.; Sugie, A. url  doi
openurl 
  Title Analysing the evolutional and functional differentiation of four types of Daphnia magna cryptochrome in Drosophila circadian clock Type Journal Article
  Year 2019 Publication Scientific Reports Abbreviated Journal Sci Rep  
  Volume 9 Issue 1 Pages (down) 8857  
  Keywords Animals  
  Abstract Cryptochrome (CRY) plays an important role in the input of circadian clocks in various species, but gene copies in each species are evolutionarily divergent. Type I CRYs function as a photoreceptor molecule in the central clock, whereas type II CRYs directly regulate the transcriptional activity of clock proteins. Functions of other types of animal CRYs in the molecular clock remain unknown. The water flea Daphnia magna contains four Cry genes. However, it is still difficult to analyse these four genes. In this study, we took advantage of powerful genetic resources available from Drosophila to investigate evolutionary and functional differentiation of CRY proteins between the two species. We report differences in subcellular localisation of each D. magna CRY protein when expressed in the Drosophila clock neuron. Circadian rhythm behavioural experiments revealed that D. magna CRYs are not functionally conserved in the Drosophila molecular clock. These findings provide a new perspective on the evolutionary conservation of CRY, as functions of the four D. magna CRY proteins have diverse subcellular localisation levels. Furthermore, molecular clocks of D. magna have been evolutionarily differentiated from those of Drosophila. This study highlights the extensive functional diversity existing among species in their complement of Cry genes.  
  Address Brain Research Institute, Niigata University, Niigata, Japan. atsushi.sugie@bri.niigata-u.ac.jp  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2045-2322 ISBN Medium  
  Area Expedition Conference  
  Notes PMID:31222139; PMCID:PMC6586792 Approved no  
  Call Number GFZ @ kyba @ Serial 2579  
Permanent link to this record
 

 
Author Kehoe, R.C.; Cruse, D.; Sanders, D.; Gaston, K.J.; van Veen, F.J.F. url  doi
openurl 
  Title Shifting daylength regimes associated with range shifts alter aphid-parasitoid community dynamics Type Journal Article
  Year 2018 Publication Ecology and Evolution Abbreviated Journal Ecol Evol  
  Volume 8 Issue 17 Pages (down) 8761-8769  
  Keywords Animals; Ecology  
  Abstract With climate change leading to poleward range expansion of species, populations are exposed to new daylength regimes along latitudinal gradients. Daylength is a major factor affecting insect life cycles and activity patterns, so a range shift leading to new daylength regimes is likely to affect population dynamics and species interactions; however, the impact of daylength in isolation on ecological communities has not been studied so far. Here, we tested for the direct and indirect effects of two different daylengths on the dynamics of experimental multitrophic insect communities. We compared the community dynamics under “southern” summer conditions of 14.5-hr daylight to “northern” summer conditions of 22-hr daylight. We show that food web dynamics indeed respond to daylength with one aphid species (Acyrthosiphon pisum) reaching much lower population sizes at the northern daylength regime compared to under southern conditions. In contrast, in the same communities, another aphid species (Megoura viciae) reached higher population densities under northern conditions. This effect at the aphid level was driven by an indirect effect of daylength causing a change in competitive interaction strengths, with the different aphid species being more competitive at different daylength regimes. Additionally, increasing daylength also increased growth rates in M. viciae making it more competitive under summer long days. As such, the shift in daylength affected aphid population sizes by both direct and indirect effects, propagating through species interactions. However, contrary to expectations, parasitoids were not affected by daylength. Our results demonstrate that range expansion of whole communities due to climate change can indeed change interaction strengths between species within ecological communities with consequences for community dynamics. This study provides the first evidence of daylength affecting community dynamics, which could not be predicted from studying single species separately.  
  Address College of Life and Environmental Sciences University of Exeter Penryn Cornwall UK  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2045-7758 ISBN Medium  
  Area Expedition Conference  
  Notes PMID:30271543; PMCID:PMC6157684 Approved no  
  Call Number NC @ ehyde3 @ Serial 2100  
Permanent link to this record
 

 
Author Kocifaj, M.; Solano-Lamphar, H.A.; Videen, G. url  doi
openurl 
  Title Night-sky radiometry can revolutionize the characterization of light-pollution sources globally Type Journal Article
  Year 2019 Publication Proceedings of the National Academy of Sciences of the United States of America Abbreviated Journal Proc Natl Acad Sci U S A  
  Volume 116 Issue 16 Pages (down) 7712-7717  
  Keywords Skyglow  
  Abstract The city emission function (CEF), describing the angular emission from an entire city as a light source, is one of the key elements in night-sky radiance models. The CEF describes the rate at which skyglow depends on distance and is indispensable in any prediction of light-pollution propagation into nocturnal environments. Nevertheless, the CEF remains virtually unexplored because appropriate retrieval tools have been unavailable until very recently. A CEF has now been obtained from ground-based night-sky observations and establishes an experiment successfully conducted in the field to retrieve the angular emission function for an urban area. The field campaign was conducted near the city of Los Mochis, Mexico, which is well isolated from other cities and thus dominates all light emissions in its vicinity. The experiment has proven that radiometry of a night sky can provide information on the light output pattern of a distant city and allows for systematic, full-area, and cost-efficient CEF monitoring worldwide. A database of CEFs could initiate a completely new phase in light-pollution research, with significant economy and advanced accuracy of night-sky brightness predictions. The experiment and its interpretation represent unique progress in the field and contribute to our fundamental understanding of the mechanism by which direct and reflected uplight interact while forming the CEF.  
  Address Battlefield Environment Division, Army Research Laboratory, Adelphi, MD 20783  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0027-8424 ISBN Medium  
  Area Expedition Conference  
  Notes PMID:30936314; PMCID:PMC6475415 Approved no  
  Call Number GFZ @ kyba @ Serial 2330  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: