|   | 
Details
   web
Records
Author Craggs, J.; Guest, J.R.; Davis, M.; Simmons, J.; Dashti, E.; Sweet, M.
Title Inducing broadcast coral spawning ex situ: Closed system mesocosm design and husbandry protocol Type Journal Article
Year 2017 Publication Ecology and Evolution Abbreviated Journal Ecol Evol
Volume 7 Issue 24 Pages (down) 11066-11078
Keywords Moonlight; Animals; *Acropora; *gametogenic cycle ex situ; *insolation; *lunar cycle; *photoperiod
Abstract For many corals, the timing of broadcast spawning correlates strongly with a number of environmental signals (seasonal temperature, lunar, and diel cycles). Robust experimental studies examining the role of these putative cues in triggering spawning have been lacking until recently because it has not been possible to predictably induce spawning in fully closed artificial mesocosms. Here, we present a closed system mesocosm aquarium design that utilizes microprocessor technology to accurately replicate environmental conditions, including photoperiod, seasonal insolation, lunar cycles, and seasonal temperature from Singapore and the Great Barrier Reef (GBR), Australia. Coupled with appropriate coral husbandry, these mesocosms were successful in inducing, for the first time, broadcast coral spawning in a fully closed artificial ex situ environment. Four Acropora species (A. hyacinthus, A. tenuis, A. millepora, and A. microclados) from two geographical locations, kept for over 1 year, completed full gametogenic cycles ex situ. The percentage of colonies developing oocytes varied from ~29% for A. hyacinthus to 100% for A. millepora and A. microclados. Within the Singapore mesocosm, A. hyacinthus exhibited the closest synchronization to wild spawning, with all four gravid colonies releasing gametes in the same lunar month as wild predicted dates. Spawning within the GBR mesocosm commenced at the predicted wild spawn date but extended over a period of 3 months. Gamete release in relation to the time postsunset for A. hyacinthus, A. millepora, and A. tenuis was consistent with time windows previously described in the wild. Spawn date in relation to full moon, however, was delayed in all species, possibly as a result of external light pollution. The system described here could broaden the number of institutions on a global scale, that can access material for broadcast coral spawning research, providing opportunities for institutions distant from coral reefs to produce large numbers of coral larvae and juveniles for research purposes and reef restoration efforts.
Address Aquatic Research Facility Environmental Sustainability Research Centre College of Life and Natural Sciences University of Derby Derby UK
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2045-7758 ISBN Medium
Area Expedition Conference
Notes PMID:29299282; PMCID:PMC5743687 Approved no
Call Number GFZ @ kyba @ Serial 2698
Permanent link to this record
 

 
Author Amichai, E.; Kronfeld-Schor, N.
Title Artificial Light at Night Promotes Activity Throughout the Night in Nesting Common Swifts (Apus apus) Type Journal Article
Year 2019 Publication Scientific Reports Abbreviated Journal Sci Rep
Volume 9 Issue 1 Pages (down) 11052
Keywords Animals
Abstract The use of artificial light at night (ALAN) is a rapidly expanding anthropogenic effect that transforms nightscapes throughout the world, causing light pollution that affects ecosystems in a myriad of ways. One of these is changing or shifting activity rhythms, largely synchronized by light cues. We used acoustic loggers to record and quantify activity patterns during the night of a diurnal bird – the common swift – in a nesting colony exposed to extremely intensive artificial illumination throughout the night at Jerusalem's Western Wall. We compared that to activity patterns at three other colonies exposed to none, medium, or medium-high ALAN. We found that in the lower-intensity ALAN colonies swifts ceased activity around sunset, later the more intense the lighting. At the Western Wall, however, swifts remained active throughout the night. This may have important implications for the birds' physiology, breeding cycle, and fitness, and may have cascading effects on their ecosystems.
Address School of Zoology, Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2045-2322 ISBN Medium
Area Expedition Conference
Notes PMID:31363144 Approved no
Call Number GFZ @ kyba @ Serial 2594
Permanent link to this record
 

 
Author Stone, J.E.; Phillips, A.J.K.; Ftouni, S.; Magee, M.; Howard, M.; Lockley, S.W.; Sletten, T.L.; Anderson, C.; Rajaratnam, S.M.W.; Postnova, S.
Title Generalizability of A Neural Network Model for Circadian Phase Prediction in Real-World Conditions Type Journal Article
Year 2019 Publication Scientific Reports Abbreviated Journal Sci Rep
Volume 9 Issue 1 Pages (down) 11001
Keywords Human Health; Instrumentation
Abstract A neural network model was previously developed to predict melatonin rhythms accurately from blue light and skin temperature recordings in individuals on a fixed sleep schedule. This study aimed to test the generalizability of the model to other sleep schedules, including rotating shift work. Ambulatory wrist blue light irradiance and skin temperature data were collected in 16 healthy individuals on fixed and habitual sleep schedules, and 28 rotating shift workers. Artificial neural network models were trained to predict the circadian rhythm of (i) salivary melatonin on a fixed sleep schedule; (ii) urinary aMT6s on both fixed and habitual sleep schedules, including shift workers on a diurnal schedule; and (iii) urinary aMT6s in rotating shift workers on a night shift schedule. To determine predicted circadian phase, center of gravity of the fitted bimodal skewed baseline cosine curve was used for melatonin, and acrophase of the cosine curve for aMT6s. On a fixed sleep schedule, the model predicted melatonin phase to within +/- 1 hour in 67% and +/- 1.5 hours in 100% of participants, with mean absolute error of 41 +/- 32 minutes. On diurnal schedules, including shift workers, the model predicted aMT6s acrophase to within +/- 1 hour in 66% and +/- 2 hours in 87% of participants, with mean absolute error of 63 +/- 67 minutes. On night shift schedules, the model predicted aMT6s acrophase to within +/- 1 hour in 42% and +/- 2 hours in 53% of participants, with mean absolute error of 143 +/- 155 minutes. Prediction accuracy was similar when using either 1 (wrist) or 11 skin temperature sensor inputs. These findings demonstrate that the model can predict circadian timing to within +/- 2 hours for the vast majority of individuals on diurnal schedules, using blue light and a single temperature sensor. However, this approach did not generalize to night shift conditions.
Address School of Physics, University of Sydney, Sydney, New South Wales, Australia
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2045-2322 ISBN Medium
Area Expedition Conference
Notes PMID:31358781; PMCID:PMC6662750 Approved no
Call Number GFZ @ kyba @ Serial 2667
Permanent link to this record
 

 
Author Larsen, D.A.; Martin, A.; Pollard, D.; Nielsen, C.F.; Hamainza, B.; Burns, M.; Stevenson, J.; Winters, A.
Title Leveraging risk maps of malaria vector abundance to guide control efforts reduces malaria incidence in Eastern Province, Zambia Type Journal Article
Year 2020 Publication Scientific Reports Abbreviated Journal Sci Rep
Volume 10 Issue 1 Pages (down) 10307
Keywords Remote sensing
Abstract Although transmission of malaria and other mosquito-borne diseases is geographically heterogeneous, in sub-Saharan Africa risk maps are rarely used to determine which communities receive vector control interventions. We compared outcomes in areas receiving different indoor residual spray (IRS) strategies in Eastern Province, Zambia: (1) concentrating IRS interventions within a geographical area, (2) prioritizing communities to receive IRS based on predicted probabilities of Anopheles funestus, and (3) prioritizing communities to receive IRS based on observed malaria incidence at nearby health centers. Here we show that the use of predicted probabilities of An. funestus to guide IRS implementation saw the largest decrease in malaria incidence at health centers, a 13% reduction (95% confidence interval = 5-21%) compared to concentrating IRS geographically and a 37% reduction (95% confidence interval = 30-44%) compared to targeting IRS based on health facility incidence. These results suggest that vector control programs could produce better outcomes by prioritizing IRS according to malaria-vector risk maps.
Address University of Montana, Missoula, MT, USA
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2045-2322 ISBN Medium
Area Expedition Conference
Notes PMID:32587283; PMCID:PMC7316765 Approved no
Call Number GFZ @ kyba @ Serial 3025
Permanent link to this record
 

 
Author Walker II, W.H.; Meléndez‐Fernández, O.H.; Nelson, R.J.; Reiter, R.J.
Title Global climate change and invariable photoperiods: A mismatch that jeopardizes animal fitness Type Journal Article
Year 2019 Publication Ecology and Evolution Abbreviated Journal Ecol Evol
Volume 9 Issue 17 Pages (down) 10044-10054
Keywords Animals; Review; Photoperiod
Abstract The Earth's surface temperature is rising, and precipitation patterns throughout the Earth are changing; the source of these shifts is likely anthropogenic in nature. Alterations in temperature and precipitation have obvious direct and indirect effects on both plants and animals. Notably, changes in temperature and precipitation alone can have both advantageous and detrimental consequences depending on the species. Typically, production of offspring is timed to coincide with optimal food availability; thus, individuals of many species display annual rhythms of reproductive function. Because it requires substantial time to establish or re‐establish reproductive function, individuals cannot depend on the arrival of seasonal food availability to begin breeding; thus, mechanisms have evolved in many plants and animals to monitor and respond to day length in order to anticipate seasonal changes in the environment. Over evolutionary time, there has been precise fine‐tuning of critical photoperiod and onset/offset of seasonal adaptations. Climate change has provoked changes in the availability of insects and plants which shifts the timing of optimal reproduction. However, adaptations to the stable photoperiod may be insufficiently plastic to allow a shift in the seasonal timing of bird and mammal breeding. Coupled with the effects of light pollution which prevents these species from determining day length, climate change presents extreme evolutionary pressure that can result in severe deleterious consequences for individual species reproduction and survival. This review describes the effects of climate change on plants and animals, defines photoperiod and the physiological events it regulates, and addresses the consequences of global climate change and a stable photoperiod.
Address Department of Neuroscience, West Virginia University, Morgantown, WV, USA; William.Walker2(at)hsc.wvu.edu
Corporate Author Thesis
Publisher Wiley Place of Publication Editor
Language English Summary Language English Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2045-7758 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number GFZ @ kyba @ Serial 2619
Permanent link to this record