|   | 
Details
   web
Records
Author Farghly, M.F.A.; Mahrose, K.M.; Rehman, Z.U.; Yu, S.; Abdelfattah, M.G.; El-Garhy, O.H.
Title Intermittent lighting regime as a tool to enhance egg production and eggshell thickness in Rhode Island Red laying hens Type Journal Article
Year 2019 Publication Poultry Science Abbreviated Journal Poult Sci
Volume 98 Issue 6 Pages (down) 2459–2465
Keywords Animals
Abstract Influences of intermittent light regime as a tool to enhance egg production, egg quality, and blood parameters of laying hens were investigated. A total of 270 hens of Rhode Island Red (during 20 to 36 wk of age) were used to investigate the effects of intermittent light regime in completely randomized design. The birds were divided into 3 equal groups (6 replicates of 15 birds each) and housed in floor pens. The first group was served as non-treated control (C) and was exposed to continuous and constant light for 16 h light/day throughout the experimental period. Whereas, birds of the other groups were exposed to intermittent lights for 20 min/h + 40 min of constant light (T1; FLASH20) and 40 min/h + 20 min of constant light (T2; FLASH40) during the 16 h of light period. Hens of T1 group showed significantly (P </= 0.05) the highest concentration of total antioxidant capacity and the lowest one of malondialdehyde in comparison with the other groups. Hens of T1 group had significantly (P </= 0.05) the greatest egg laying rate and egg mass in comparison with the other counterparts. Feed consumption was similar in the groups under study. Hens exposed to FLASH20 had the lowest (P </= 0.05) FCR when compared with the other treatments. Eggs produced from hens exposed to FLASH20 had the highest value of shell thickness followed by the control and then that of those exposed to FLASH40. There were insignificant differences among the treatments in body weight of hens and all of other egg quality and egg problem traits. In conclusion, intermittent light regime of 20 min/h was the most efficient in comparison with the other ones. Finally, intermittent light regime of 20 min/h during laying period (during 20 to 36 wk of age) is highly recommended.
Address Animal Production Department, Faculty of Agriculture, Benha University, Qalubia, Egypt
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0032-5791 ISBN Medium
Area Expedition Conference
Notes PMID:30715501 Approved no
Call Number GFZ @ kyba @ Serial 2206
Permanent link to this record
 

 
Author Bará, S.; Aubé, M.; Barentine, J.; Zamorano, J.
Title Magnitude to luminance conversions and visual brightness of the night sky Type Journal Article
Year 2020 Publication Monthly Notices of the Royal Astronomical Society Abbreviated Journal MNRAS
Volume 493 Issue 2 Pages (down) 2429–2437
Keywords Skyglow; light pollution; atmospheric effects; techniques: photometric; methods: numerical; luminance
Abstract The visual brightness of the night sky is not a single-valued function of its brightness in other photometric bands, because the transformations between photometric systems depend on the spectral power distribution of the skyglow. We analyze the transformation between the night sky brightness in the Johnson-Cousins V band (mV, measured in magnitudes per square arcsecond, mpsas) and its visual luminance (L, in SI units cd m−2) for observers with photopic and scotopic adaptation, in terms of the spectral power distribution of the incident light. We calculate the zero-point luminances for a set of skyglow spectra recorded at different places in the world, including strongly light-polluted locations and sites with nearly pristine natural dark skies. The photopic skyglow luminance corresponding to mV = 0.00 mpsas is found to vary between 1.11–1.34 × 105 cd m−2 if mV is reported in the absolute (AB) magnitude scale, and between 1.18–1.43 × 105 cd m−2 if a Vega scale for mV is used instead. The photopic luminance for mV = 22.0 mpsas is correspondingly comprised between 176 and 213 μcd m−2 (AB), or 187 and 227 μcd m−2 (Vega). These constants tend to decrease for increasing correlated color temperatures (CCT). The photopic zero-point luminances are generally higher than the ones expected for blackbody radiation of comparable CCT. The scotopic-to-photopic luminance ratio (S/P) for our spectral dataset varies from 0.8 to 2.5. Under scotopic adaptation the dependence of the zero-point luminances with the CCT, and their values relative to blackbody radiation, are reversed with respect to photopic ones.
Address Departamento de Física Aplicada, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Galicia; salva.bara(at)usc.gal
Corporate Author Thesis
Publisher Oxford Academic Place of Publication Editor
Language English Summary Language English Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number IDA @ john @ Serial 2825
Permanent link to this record
 

 
Author Shinobu Yasuo, Ayaka Iwamoto, Sang-il Lee, Shotaro Ochiai, Rina Hitachi, Satomi Shibata, Nobuo Uotsu, Chie Tarumizu, Sayuri Matsuoka, Mitsuhiro Furuse, Shigekazu Higuchi
Title L-Serine Enhances Light-Induced Circadian Phase Resetting in Mice and Humans Type Journal Article
Year 2017 Publication Journal of Nutrition Abbreviated Journal
Volume 147 Issue 12 Pages (down) 2347-2355
Keywords Animals; Human Health
Abstract Background: The circadian clock is modulated by the timing of ingestion or food composition, but the effects of specific nutrients are poorly understood.

Objective: We aimed to identify the amino acids that modulate the circadian clock and reset the light-induced circadian phase in mice and humans.

Methods: Male CBA/N mice were orally administered 1 of 20 L-amino acids, and the circadian and light-induced phase shifts of wheel-running activity were analyzed. Antagonists of several neurotransmitter pathways were injected before L-serine administration, and light-induced phase shifts were analyzed. In addition, the effect of L-serine on the light-induced phase advance was investigated in healthy male students (mean ± SD age 22.2 ± 1.8 y) by using dim-light melatonin onset (DLMO) determined by saliva samples as an index of the circadian phase.

Results: L-Serine administration enhanced light-induced phase shifts in mice (1.86-fold; P < 0.05). Both L-serine and its metabolite D-serine, a coagonist of N-methyl-D-aspartic acid (NMDA) receptors, exerted this effect, but D-serine concentrations in the hypothalamus did not increase after L-serine administration. The effect of L-serine was blocked by picrotoxin, an antagonist of &#947;-aminobutyric acid A receptors, but not by MK801, an antagonist of NMDA receptors. L-Serine administration altered the long-term expression patterns of clock genes in the suprachiasmatic nuclei. After advancing the light-dark cycle by 6 h, L-serine administration slightly accelerated re-entrainment to the shifted cycle. In humans, L-serine ingestion before bedtime induced significantly larger phase advances of DLMO after bright-light exposure during the morning (means ± SEMs—L-serine: 25.9 ± 6.6 min; placebo: 12.1 ± 7.0 min; P < 0.05).

Conclusion: These results suggest that L-serine enhances light-induced phase resetting in mice and humans, and it may be useful for treating circadian disturbances.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number LoNNe @ kyba @ Serial 1784
Permanent link to this record
 

 
Author Koen, E.L.; Minnaar, C.; Roever, C.L.; Boyles, J.G.
Title Emerging threat of the 21(st) century lightscape to global biodiversity Type Journal Article
Year 2018 Publication Global Change Biology Abbreviated Journal Glob Chang Biol
Volume 24 Issue 6 Pages (down) 2315-2324
Keywords Animals; Ecology; Remote Sensing
Abstract Over the last century the temporal and spatial distribution of light on Earth has been drastically altered by human activity. Despite mounting evidence of detrimental effects of light pollution on organisms and their trophic interactions, the extent to which light pollution threatens biodiversity on a global scale remains unclear. We assessed the spatial extent and magnitude of light encroachment by measuring change in the extent of light using satellite imagery from 1992 to 2012 relative to species richness for terrestrial and freshwater mammals, birds, reptiles, and amphibians. The encroachment of light into previously dark areas was consistently high, often doubling, in areas of high species richness for all four groups. This pattern persisted for nocturnal groups (e.g., bats, owls, and geckos) and species considered vulnerable to extinction. Areas with high species richness and large increases in light extent were clustered within newly industrialized regions where expansion of light is likely to continue unabated unless we act to conserve remaining darkness. Implementing change at a global scale requires global public, and therefore scientific, support. Here, we offer substantial evidence that light extent is increasing where biodiversity is high, representing an emerging threat to global biodiversity requiring immediate attention. This article is protected by copyright. All rights reserved.
Address Center for Ecology and Department of Zoology, Southern Illinois University, Carbondale, Illinois, 62901, USA
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1354-1013 ISBN Medium
Area Expedition Conference
Notes PMID:29575356 Approved no
Call Number GFZ @ kyba @ Serial 1833
Permanent link to this record
 

 
Author Gaston, K.J.; Holt, L.A.
Title Nature, extent and ecological implications of night‐time light from road vehicles Type Journal Article
Year 2018 Publication Journal of Applied Ecology Abbreviated Journal
Volume 55 Issue 5 Pages (down) 2296-2307
Keywords Animals; Ecology; Lighting; Review
Abstract The erosion of night‐time by the introduction of artificial lighting constitutes a profound pressure on the natural environment. It has altered what had for millennia been reliable signals from natural light cycles used for regulating a host of biological processes, with impacts ranging from changes in gene expression to ecosystem processes.

Studies of these impacts have focused almost exclusively on those resulting from stationary sources of light emissions, and particularly streetlights. However, mobile sources, especially road vehicle headlights, contribute substantial additional emissions.

The ecological impacts of light emissions from vehicle headlights are likely to be especially high because these are (1) focused so as to light roadsides at higher intensities than commonly experienced from other sources, and well above activation thresholds for many biological processes; (2) projected largely in a horizontal plane and thus can carry over long distances; (3) introduced into much larger areas of the landscape than experience street lighting; (4) typically broad “white” spectrum, which substantially overlaps the action spectra of many biological processes and (5) often experienced at roadsides as series of pulses of light (produced by passage of vehicles), a dynamic known to have major biological impacts.

The ecological impacts of road vehicle headlights will markedly increase with projected global growth in numbers of vehicles and the road network, increasing the local severity of emissions (because vehicle numbers are increasing faster than growth in the road network) and introducing emissions into areas from which they were previously absent. The effects will be further exacerbated by technological developments that are increasing the intensity of headlight emissions and the amounts of blue light in emission spectra.

Synthesis and applications. Emissions from vehicle headlights need to be considered as a major, and growing, source of ecological impacts of artificial night‐time lighting. It will be a significant challenge to minimise these impacts whilst balancing drivers' needs at night and avoiding risk and discomfort for other road users. Nonetheless, there is potential to identify solutions to these conflicts, both through the design of headlights and that of roads.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number GFZ @ kyba @ Serial 1841
Permanent link to this record