toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Schulte-Römer, N.; Meier, J.; Söding, M.; Dannemann, E. url  doi
openurl 
  Title The LED Paradox: How Light Pollution Challenges Experts to Reconsider Sustainable Lighting Type Journal Article
  Year 2019 Publication Sustainability Abbreviated Journal Sustainability  
  Volume 11 Issue 21 Pages (down) 6160  
  Keywords Energy; Lighting; Society  
  Abstract In the 21st century, the notion of “sustainable lighting” is closely associated with LED technology. In the past ten years, municipalities and private light users worldwide have installed light-emitting diodes in urban spaces and public streets to save energy. Yet an increasing body of interdisciplinary research suggests that supposedly sustainable LED installations are in fact unsustainable, because they increase light pollution. Paradoxically, blue-rich cool-white LED lighting, which is the most energy-efficient, also appears to be the most ecologically unfriendly. Biologists, physicians and ecologists warn that blue-rich LED light disturbs the circadian day-and-night rhythm of living organisms, including humans, with potential negative health effects on individual species and whole ecosystems. Can the paradox be solved? This paper explores this question based on our transdisciplinary research project Light Pollution—A Global Discussion. It reveals how light pollution experts and lighting professionals see the challenges and potential of LED lighting from their different viewpoints. This expert feedback shows that “sustainable LED lighting” goes far beyond energy efficiency as it raises complex design issues that imply stakeholder negotiation. It also suggests that the LED paradox may be solved in context, but hardly in principle.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2071-1050 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number GFZ @ kyba @ Serial 2824  
Permanent link to this record
 

 
Author Li, X.; Zhou, Y. url  doi
openurl 
  Title Urban mapping using DMSP/OLS stable night-time light: a review Type Journal Article
  Year 2017 Publication International Journal of Remote Sensing Abbreviated Journal International Journal of Remote Sensing  
  Volume 38 Issue 21 Pages (down) 6030-6046  
  Keywords Remote Sensing; Review  
  Abstract The Defense Meteorological Satellite Program/Operational Linescane System (DMSP/OLS) stable night-time light (NTL) data showed great potential in urban extent mapping across a variety of scales with historical records dating back to 1990s. In order to advance this data, a systematic methodology review on NTL-based urban extent mapping was carried out, with emphases on four aspects including the saturation of luminosity, the blooming effect, the intercalibration of time series, and their temporal pattern adjustment. We think ancillary features (e.g. land surface conditions and socioeconomic activities) can help reveal more spatial details in urban core regions with high digital number (DN) values. In addition, dynamic optimal thresholds are needed to address issues of different exaggeration of NTL data in the large scale urban mapping. Then, we reviewed three key aspects (reference region, reference satellite/year, and calibration model) in the current intercalibration framework of NTL time series, and summarized major reference regions in literature that were used for intercalibration, which is critical to achieve a globally consistent series of NTL DN values over years. Moreover, adjustment of temporal pattern on intercalibrated NTL series is needed to trace the urban sprawl process, particularly in rapidly developing regions. In addition, we analysed those applications for urban extent mapping based on the new generation NTL data of Visible/Infrared Imager/Radiometer Suite. Finally, we prospected the challenges and opportunities including the improvement of temporally inconsistent NTL series, mitigation of spatial heterogeneity of blooming effect in NTL, and synthesis of different NTL satellites, in global urban extent mapping.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0143-1161 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number GFZ @ kyba @ Serial 2222  
Permanent link to this record
 

 
Author Willmott, N.J.; Henneken, J.; Selleck, C.J.; Jones, T.M. url  doi
openurl 
  Title Artificial light at night alters life history in a nocturnal orb-web spider Type Journal Article
  Year 2018 Publication PeerJ Abbreviated Journal  
  Volume 6 Issue Pages (down) e5599  
  Keywords Animals  
  Abstract The prevalence of artificial light at night (ALAN) is increasing rapidly around the world. The potential physiological costs of this night lighting are often evident in life history shifts. We investigated the effects of chronic night-time exposure to ecologically relevant levels of LED lighting on the life history traits of the nocturnal Australian garden orb-web spider (Eriophora biapicata). We reared spiders under a 12-h day and either a 12-h natural darkness (∼0 lux) or a 12-h dim light (∼20 lux) night and assessed juvenile development, growth and mortality, and adult reproductive success and survival. We found that exposure to ALAN accelerated juvenile development, resulting in spiders progressing through fewer moults, and maturing earlier and at a smaller size. There was a significant increase in daily juvenile mortality for spiders reared under 20 lux, but the earlier maturation resulted in a comparable number of 0 lux and 20 lux spiders reaching maturity. Exposure to ALAN also considerably reduced the number of eggs produced by females, and this was largely associated with ALAN-induced reductions in body size. Despite previous observations of increased fitness for some orb-web spiders in urban areas and near night lighting, it appears that exposure to artificial night lighting may lead to considerable developmental costs. Future research will need to consider the detrimental effects of ALAN combined with foraging benefits when studying nocturnal insectivores that forage around artificial lights.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2167-8359 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number GFZ @ kyba @ Serial 2023  
Permanent link to this record
 

 
Author Kocifaj, M.; Kundracik, F.; Bilý, O. url  doi
openurl 
  Title Emission spectra of light-pollution sources determined from the light-scattering spectrometry of the night sky Type Journal Article
  Year 2020 Publication Monthly Notices of the Royal Astronomical Society Abbreviated Journal  
  Volume 491 Issue 4 Pages (down) 5586-5594  
  Keywords Skyglow; Remote Sensing  
  Abstract The emission spectrum of a light-pollution source is a determining factor for modelling artificial light at night. The spectral composition of skyglow is normally derived from the initial spectra of all artificial light sources contributing to the diffuse illumination of an observation point. However, light scattering in the ambient atmosphere imposes a wavelength-specific distortion on the optical signals captured by the measuring device. The nature of the emission, the spectra and the light-scattering phenomena not only control the spectral properties of the ground-reaching radiation, but also provide a unique tool for remote diagnosis and even identification of the emission spectra of the light-polluting sources. This is because the information contained in the night-sky brightness is preferably measured in directions towards a glowing dome of light over the artificial source of light. We have developed a new method for obtaining the emission spectra using remote terrestrial sensing of the bright patches of sky associated with a source. Field experiments conducted in Vienna and Bratislava have been used to validate the theoretical model and the retrieval method. These experiments demonstrate that the numerical inversion is successful even if the signal-to-noise ratio is small. The method for decoding the emission spectra by the light-scattering spectrometry of a night sky is a unique approach that enables for (i) a systematic characterization of the light-pollution sources over a specific territory, and (ii) a significant improvement in the numerical prediction of skyglow changes that we can expect at observatories.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0035-8711 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number GFZ @ kyba @ Serial 2793  
Permanent link to this record
 

 
Author Depner, C.M.; Melanson, E.L.; McHill, A.W.; Wright, K.P.J. url  doi
openurl 
  Title Mistimed food intake and sleep alters 24-hour time-of-day patterns of the human plasma proteome Type Journal Article
  Year 2018 Publication Proceedings of the National Academy of Sciences of the United States of America Abbreviated Journal Proc Natl Acad Sci U S A  
  Volume 115 Issue 23 Pages (down) E5390-E5399  
  Keywords Human Health  
  Abstract Proteomics holds great promise for understanding human physiology, developing health biomarkers, and precision medicine. However, how much the plasma proteome varies with time of day and is regulated by the master circadian suprachiasmatic nucleus brain clock, assessed here by the melatonin rhythm, is largely unknown. Here, we assessed 24-h time-of-day patterns of human plasma proteins in six healthy men during daytime food intake and nighttime sleep in phase with the endogenous circadian clock (i.e., circadian alignment) versus daytime sleep and nighttime food intake out of phase with the endogenous circadian clock (i.e., circadian misalignment induced by simulated nightshift work). We identified 24-h time-of-day patterns in 573 of 1,129 proteins analyzed, with 30 proteins showing strong regulation by the circadian cycle. Relative to circadian alignment, the average abundance and/or 24-h time-of-day patterns of 127 proteins were altered during circadian misalignment. Altered proteins were associated with biological pathways involved in immune function, metabolism, and cancer. Of the 30 circadian-regulated proteins, the majority peaked between 1400 hours and 2100 hours, and these 30 proteins were associated with basic pathways involved in extracellular matrix organization, tyrosine kinase signaling, and signaling by receptor tyrosine-protein kinase erbB-2. Furthermore, circadian misalignment altered multiple proteins known to regulate glucose homeostasis and/or energy metabolism, with implications for altered metabolic physiology. Our findings demonstrate the circadian clock, the behavioral wake-sleep/food intake-fasting cycle, and interactions between these processes regulate 24-h time-of-day patterns of human plasma proteins and help identify mechanisms of circadian misalignment that may contribute to metabolic dysregulation.  
  Address Division of Endocrinology, Metabolism, and Diabetes, University of Colorado Anschutz Medical Campus, Aurora, CO 80045  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0027-8424 ISBN Medium  
  Area Expedition Conference  
  Notes PMID:29784788 Approved no  
  Call Number GFZ @ kyba @ Serial 1916  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: