toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Bennie, J.; Davies, T.W.; Cruse, D.; Inger, R.; Gaston, K.J.; Lewis, O. url  doi
openurl 
  Title Artificial light at night causes top-down and bottom-up trophic effects on invertebrate populations Type Journal Article
  Year 2018 Publication Journal of Applied Ecology Abbreviated Journal J Appl Ecol  
  Volume 55 Issue 6 Pages (down) 2698-2706  
  Keywords Ecology; Animals; Plants  
  Abstract Globally, many ecosystems are exposed to artificial light at night. Nighttime lighting has direct biological impacts on species at all trophic levels. However, the effects of artificial light on biotic interactions remain, for the most part, to be determined.

We exposed experimental mesocosms containing combinations of grassland plants and invertebrate herbivores and predators to illumination at night over a 3‐year period to simulate conditions under different common forms of street lighting.

We demonstrate both top‐down (predation‐controlled) and bottom‐up (resource‐controlled) impacts of artificial light at night in grassland communities. The impacts on invertebrate herbivore abundance were wavelength‐dependent and mediated via other trophic levels.

White LED lighting decreased the abundance of a generalist herbivore mollusc by 55% in the presence of a visual predator, but not in its absence, while monochromatic amber light (with a peak wavelength similar to low‐pressure sodium lighting) decreased abundance of a specialist herbivore aphid (by 17%) by reducing the cover and flower abundance of its main food plant in the system. Artificial white light also significantly increased the food plant's foliar carbon to nitrogen ratio.

We conclude that exposure to artificial light at night can trigger ecological effects spanning trophic levels, and that the nature of such impacts depends on the wavelengths emitted by the lighting technology employed.

Policy implications. Our results confirm that artificial light at night, at illuminance levels similar to roadside vegetation, can have population effects mediated by both top‐down and bottom‐up effects on ecosystems. Given the increasing ubiquity of light pollution at night, these impacts may be widespread in the environment. These results underline the importance of minimizing ecosystem disruption by reducing light pollution in natural and seminatural ecosystems.
 
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0021-8901 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number NC @ ehyde3 @ Serial 2086  
Permanent link to this record
 

 
Author Viera-Perez, M.; Hernandez-Calvento, L.; Hesp, P.A.; Santana-Del Pino, A. url  doi
openurl 
  Title Effects of artificial light on flowering of foredune vegetation Type Journal Article
  Year 2019 Publication Ecology Abbreviated Journal Ecology  
  Volume 100 Issue 5 Pages (down) e02678  
  Keywords Plants; Coastal management; coastal dunes; Canary Islands; Spain; Europe  
  Abstract The impact of ecological light pollution involves alteration of periods of natural light, a fact that has proven effects on ecosystems. Few studies have focused on the impact of this pollution on wild plant species, and none on coastal dune plants. Many coastal dunes and their plants are adjacent to tourist areas, and these might be affected by light pollution. Such is the case of the Natural Reserve Dunas de Maspalomas (Gran Canaria), where some individuals of the plant species Traganum moquinii, located in the El Ingles beach foredune zone, are affected by light pollution. This study examines the effect of light pollution on the flowering process, and by extension the reproductive cycle of these plants. Plants located closer to high artificial illumination sources receive ~2120 hours per year of intense light more than plants located furthest from those artificial lighting sources. Parts of the plants of Traganum moquinii exposed directly to the artificial light show a significant decrease in the production of flowers, compared to the parts in plants in shade, and to the plants more distant from artificial lights. In consequence, plants exposed more directly to artificial light have a lower potential for seed reproduction. The spectrum of artificial light also affects the plants, and light between 600 and 700 nm primarily affects the reproductive cycle of the Traganum moquinii species. The implications for the ecological and geomorphological functioning of the dune system are discussed, because this species plays a decisive role in the formation of foredune zones and nebkhas in arid dune systems.  
  Address Departamento de Matematicas, Universidad de Las Palmas de Gran Canaria, 35017, Las Palmas de Gran Canaria, Spain  
  Corporate Author Thesis  
  Publisher Ecological Society of America Place of Publication Editor  
  Language English Summary Language English Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0012-9658 ISBN Medium  
  Area Expedition Conference  
  Notes PMID:30825328 Approved no  
  Call Number GFZ @ kyba @ Serial 2244  
Permanent link to this record
 

 
Author Bará, S.; Nievas, M.; Sanchez de Miguel, A.; Zamorano, J. url  openurl
  Title Zernike analysis of all-sky night brightness maps Type Journal Article
  Year 2014 Publication Applied Optics Abbreviated Journal Appl Opt  
  Volume 53 Issue 12 Pages (down) 2677-2686  
  Keywords modeling; light at night; light pollution; all-sky; Zernike polynomials; image decomposition; sky brightness  
  Abstract All-sky night brightness maps (calibrated images of the night sky with hemispherical field-of-view (FOV) taken at standard photometric bands) provide useful data to assess the light pollution levels at any ground site. We show that these maps can be efficiently described and analyzed using Zernike circle polynomials. The relevant image information can be compressed into a low-dimensional coefficients vector, giving an analytical expression for the sky brightness and alleviating the effects of noise. Moreover, the Zernike expansions allow us to quantify in a straightforward way the average and zenithal sky brightness and its variation across the FOV, providing a convenient framework to study the time course of these magnitudes. We apply this framework to analyze the results of a one-year campaign of night sky brightness measurements made at the UCM observatory in Madrid.  
  Address Área de Óptica, Dept. de Física Aplicada, Fac. de Física, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Galicia, Spain  
  Corporate Author Thesis  
  Publisher Optical Society of America Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0003-6935 ISBN Medium  
  Area Expedition Conference  
  Notes PMID:24787595 Approved no  
  Call Number IDA @ john @ Serial 318  
Permanent link to this record
 

 
Author Davies, T.W.; Bennie, J.; Cruse, D.; Blumgart, D.; Inger, R.; Gaston, K.J. url  doi
openurl 
  Title Multiple night-time light-emitting diode lighting strategies impact grassland invertebrate assemblages Type Journal Article
  Year 2017 Publication Global Change Biology Abbreviated Journal Glob Chang Biol  
  Volume 23 Issue 7 Pages (down) 2641-2648  
  Keywords Ecology; grasslands; LED  
  Abstract White light-emitting diodes (LEDs) are rapidly replacing conventional outdoor lighting technologies around the world. Despite rising concerns over their impact on the environment and human health, the flexibility of LEDs has been advocated as a means of mitigating the ecological impacts of globally widespread outdoor night-time lighting through spectral manipulation, dimming and switching lights off during periods of low demand. We conducted a three-year field experiment in which each of these lighting strategies was simulated in a previously artificial light naive grassland ecosystem. White LEDs both increased the total abundance and changed the assemblage composition of adult spiders and beetles. Dimming LEDs by 50% or manipulating their spectra to reduce ecologically damaging wavelengths partially reduced the number of commoner species affected from seven to four. A combination of dimming by 50% and switching lights off between midnight and 04:00 am showed the most promise for reducing the ecological costs of LEDs, but the abundances of two otherwise common species were still affected. The environmental consequences of using alternative lighting technologies are increasingly well established. These results suggest that while management strategies using LEDs can be an effective means of reducing the number of taxa affected, averting the ecological impacts of night-time lighting may ultimately require avoiding its use altogether.  
  Address Environment and Sustainability Institute, University of Exeter, Penryn, Cornwall, TR10 9FE, UK  
  Corporate Author Thesis  
  Publisher Wiley Place of Publication Editor  
  Language English Summary Language English Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1354-1013 ISBN Medium  
  Area Expedition Conference  
  Notes PMID:28139040 Approved no  
  Call Number LoNNe @ kyba @ Serial 1634  
Permanent link to this record
 

 
Author Puschnig, J.; Wallner, S.; Posch, T. url  doi
openurl 
  Title Circalunar variations of the night sky brightness – an FFT perspective on the impact of light pollution Type Journal Article
  Year 2020 Publication Monthly Notices of the Royal Astronomical Society Abbreviated Journal  
  Volume 492 Issue 2 Pages (down) 2622-2637  
  Keywords Skyglow; Moonlight  
  Abstract Circa-monthly activity conducted by moonlight is observed in many species on Earth. Given the vast amount of artificial light at night (ALAN) that pollutes large areas around the globe, the synchronization to the circalunar cycle is often strongly perturbed. Using 2-yr data from a network of 23 photometers (Sky Quality Meters; SQM) in Austria (latitude ∼48°), we quantify how light pollution impacts the recognition of the circalunar periodicity. We do so via frequency analysis of nightly mean sky brightnesses using Fast Fourier Transforms. A very tight linear relation between the mean zenithal night sky brightness (NSB) given in magSQMarcsec−2 and the amplitude of the circalunar signal is found, indicating that for sites with a mean zenithal NSB brighter than 16.5 magSQMarcsec−2 the lunar rhythm practically vanishes. This finding implies that the circalunar rhythm is still detectable (within the broad bandpass of the SQM) at most places around the globe, but its amplitude against the light polluted sky is strongly reduced. We find that the circalunar contrast in zenith is reduced compared to ALAN-free sites by factors of 19 in the state capital of Linz (∼200 000 inhabitants) and 13 in small towns, e.g. Freistadt and Mattighofen, with less than 10 000 inhabitants. Only two of our sites, both situated in national parks (Bodinggraben and Zöblboden), show natural circalunar amplitudes. At our urban sites, we further detect a strong seasonal signal that is linked to the amplification of anthropogenic skyglow during the winter months due to climatological conditions.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0035-8711 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number GFZ @ kyba @ Serial 2838  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: