|   | 
Details
   web
Records
Author Bombieri, G.; Delgado, M. del M.; Russo, L.F.; Garrote, P.J.; López-Bao, J.V.; Fedriani, J.M.; Penteriani, V.
Title Patterns of wild carnivore attacks on humans in urban areas Type Journal Article
Year 2018 Publication Scientific Reports Abbreviated Journal Sci Rep
Volume 8 Issue 1 Pages (up)
Keywords Animals
Abstract Attacks by wild carnivores on humans represent an increasing problem in urban areas across North America and their frequency is expected to rise following urban expansion towards carnivore habitats. Here, we analyzed records of carnivore attacks on humans in urban areas of the U.S. and Canada between 1980 and 2016 to analyze the general patterns of the attacks, as well as describe the landscape structure and, for those attacks occurring at night, the light conditions at the site of the attacks. We found that several behavioral and landscape-related factors were recurrent elements in the attacks recorded. The species for which the attack locations were available (coyote and black bear) attacked in areas with different conditions of landscape structure and artificial light. Specifically, black bears attacked more frequently in areas with abundant and aggregated vegetation cover and scarce buildings and roads, while coyotes attacked in a broader range of landscape conditions. At night, black bears attacked in generally darker areas than coyotes. By providing a comprehensive perspective of the phenomenon, this study will improve our understanding of how effective strategies aimed at reducing the frequency of risky encounters in urban areas should be developed.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2045-2322 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number GFZ @ kyba @ Serial 2130
Permanent link to this record
 

 
Author Chen, Y.; Cheng, M.; Su, T.; Gao, T.; Yu, W.
Title Constant light exposure aggravates POMC-mediated muscle wasting associated with hypothalamic alteration of circadian clock and SIRT1 in endotoxemia rats Type Journal Article
Year 2018 Publication Biochemical and Biophysical Research Communications Abbreviated Journal Biochem Biophys Res Commun
Volume in press Issue Pages (up)
Keywords Animals
Abstract Constant light exposure is widespread in the intensive care unit (ICU) and could increase the rate of brain dysfunction as delirium and sleep disorders in critical patients. And the activation of hypothalamic neuropeptides is proved to play a crucial role in regulating hypercatabolism, especially skeletal muscle wasting in critical patients, which could lead to serious complications and poor prognosis. Here we investigated the hypothesis that constant light exposure could aggravate skeletal muscle wasting in endotoxemia rats and whether it was associated with alterations of circadian clock and hypothalamic proopiomelanocortin(POMC) expression. Fifty-four adult male Sprague-Dawley rats were intraperitoneally injected with lipopolysaccharide(LPS) or saline, subjected to constant light or a 12:12h light-dark cycle for 7 days. On day 8, rats were sacrificed across six time points in 24h and hypothalamus tissues and skeletal muscle were obtained. Rates of muscle wasting were measured by 3-methylhistidine(3-MH) and tyrosine release as well as expression of two muscle atrophic genes, muscle ring finger 1(MuRF-1) and muscle atrophy F-box(MAFbx). The expression of circadian clock genes, silent information regulator 1(SIRT1), POMC and hypothalamic inflammatory cytokines were also detected. Results showed that LPS administration significantly increased hypothalamic POMC expression, inflammatory cytokine levels and muscle wasting rates. Meanwhile constant light exposure disrupted the circadian rhythm, declined the expression of SIRT1 as well as aggravated hypothalamic POMC overexpression and skeletal muscle wasting in rats with endotoxemia. Taken together, the results demonstrated that constant light exposure could aggravate POMC-mediated skeletal muscle wasting in endotoxemia rats, which is associated with alteration of circadian clocks and SIRT1 in the hypothalamus.
Address Department of Intensive Care Unit, The Affiliated Drum Tower Hospital, Medical School of Nanjing University, Nanjing, 210008, China. Electronic address: yudrnj2@163.com
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0006-291X ISBN Medium
Area Expedition Conference
Notes PMID:30528733 Approved no
Call Number GFZ @ kyba @ Serial 2134
Permanent link to this record
 

 
Author Zerbini, G.; Kantermann, T.; Merrow, M.
Title Strategies to decrease social jetlag: Reducing evening blue light advances sleep and melatonin Type Journal Article
Year 2018 Publication The European Journal of Neuroscience Abbreviated Journal Eur J Neurosci
Volume in press Issue Pages (up)
Keywords Human Health
Abstract The timing of sleep is under the control of the circadian clock, which uses light to entrain to the external light-dark cycle. A combination of genetic, physiological and environmental factors produces individual differences in chronotype (entrained phase as manifest in sleep timing). A mismatch between circadian and societal (e.g., work) clocks leads to a condition called social jetlag, which is characterized by changing sleep times over work and free days and accumulation of sleep debt. Social jetlag, which is prevalent in late chronotypes, has been related to several health issues. One way to reduce social jetlag would be to advance the circadian clock via modifications of the light environment. We thus performed two intervention field studies to describe methods for decreasing social jetlag. One study decreased evening light exposure (via blue-light-blocking glasses) and the other used increased morning light (via the use of curtains). We measured behaviour as well as melatonin; the latter in order to validate that behaviour was consistent with this neuroendocrinological phase marker of the circadian clock. We found that a decrease in evening blue light exposure led to an advance in melatonin and sleep onset on workdays. Increased morning light exposure advanced neither melatonin secretion nor sleep timing. Neither protocol led to a significant change in social jetlag. Despite this, our findings show that controlling light exposure at home can be effective in advancing melatonin secretion and sleep, thereby helping late chronotypes to better cope with early social schedules.
Address Institute of Medical Psychology, LMU Munich, Munich, Germany
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0953-816X ISBN Medium
Area Expedition Conference
Notes PMID:30506899 Approved no
Call Number GFZ @ kyba @ Serial 2138
Permanent link to this record
 

 
Author Kyba, C.C.M.; Spitschan, M.
Title Comment on 'Domestic light at night and breast cancer risk: a prospective analysis of 105000 UK women in the Generations Study' Type Journal Article
Year 2018 Publication British Journal of Cancer Abbreviated Journal Br J Cancer
Volume in press Issue Pages (up)
Keywords Human Health; Commentary
Abstract
Address Department of Experimental Psychology, University of Oxford, Oxford, UK
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0007-0920 ISBN Medium
Area Expedition Conference
Notes PMID:30584260 Approved no
Call Number GFZ @ kyba @ Serial 2145
Permanent link to this record
 

 
Author Flores, D.E.F.L.; Oda, G.A.
Title Novel Light/Dark Regimens with Minimum Light Promote Circadian Disruption: Simulations with a Model Oscillator Type Journal Article
Year 2018 Publication Journal of Biological Rhythms Abbreviated Journal J Biol Rhythms
Volume in press Issue Pages (up)
Keywords Animals
Abstract Artificial lab manipulation of LD cycles has enabled simulations of the disruptive conditions found in modern human societies, such as jet-lag, night-work and light at night. New techniques using animal models have been developed, and these can greatly improve our understanding of circadian disruption. Some of these techniques, such as in vivo bioluminescence assays, require minimum external light. This requirement is challenging because the usual lighting protocols applied in circadian desynchronization experiments rely on considerable light input. Here, we present a novel LD regimen that can disrupt circadian rhythms with little light per day, based on computer simulations of a model limit-cycle oscillator. The model predicts that a single light pulse per day has the potential to disturb rhythmicity when pulse times are randomly distributed within an interval. Counterintuitively, the rhythm still preserves an underlying 24-h periodicity when this interval is as large as 14 h, indicating that day/night cues are still detectable. Only when pulses are spread throughout the whole 24-h day does the rhythm lose any day-to-day period correlation. In addition, the model also reveals that stronger pulses of brighter light should exacerbate the disrupting effects. We propose the use of this LD schedule-which would be compatible with the requirements of in vivo bioluminescence assays-to help understand circadian disruption and associated illnesses.
Address Instituto de Biociencias, Universidade de Sao Paulo, Sao Paulo, SP, Brazil
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0748-7304 ISBN Medium
Area Expedition Conference
Notes PMID:30595077 Approved no
Call Number GFZ @ kyba @ Serial 2146
Permanent link to this record