toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Russart, K.L.G.; Nelson, R.J. url  doi
openurl 
  Title Artificial light at night alters behavior in laboratory and wild animals Type Journal Article
  Year 2018 Publication Journal of Experimental Zoology. Part A, Ecological and Integrative Physiology Abbreviated Journal J Exp Zool A Ecol Integr Physiol  
  Volume 329 Issue 8-9 Pages 401-408  
  Keywords Animals; Review  
  Abstract Life has evolved to internalize and depend upon the daily and seasonal light cycles to synchronize physiology and behavior with environmental conditions. The nightscape has been vastly changed in response to the use of artificial lighting. Wildlife is now often exposed to direct lighting via streetlights or indirect lighting via sky glow at night. Because many activities rely on daily and seasonal light cues, the effects of artificial light at night could be extensive, but remain largely unknown. Laboratory studies suggest exposure to light at night can alter typical timing of daily locomotor activity and shift the timing of foraging/food intake to the daytime in nocturnal rodents. Additionally, nocturnal rodents decrease anxiety-like behaviors (i.e., spend more time in the open and increase rearing up) in response to even dim light at night. These are all likely maladaptive responses in the wild. Photoperiodic animals rely on seasonal changes in day length as a cue to evoke physiological and behavioral modifications to anticipate favorable and unfavorable conditions for survival and reproduction. Light at night can mask detection of short days, inappropriately signal long days, and thus desynchronize seasonal reproductive activities. We review laboratory and the sparse field studies that address the effects of exposure to artificial light at night to propose that exposure to light at night disrupts circadian and seasonal behavior in wildlife, which potentially decreases individual fitness and modifies ecosystems.  
  Address Behavioral Medicine and Psychiatry, School of Medicine, West Virginia University, Morgantown, West Virginia  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN (down) 2471-5638 ISBN Medium  
  Area Expedition Conference  
  Notes PMID:29806740 Approved no  
  Call Number GFZ @ kyba @ Serial 1928  
Permanent link to this record
 

 
Author Aulsebrook, A.E.; Jones, T.M.; Mulder, R.A.; Lesku, J.A. url  doi
openurl 
  Title Impacts of artificial light at night on sleep: A review and prospectus Type Journal Article
  Year 2018 Publication Journal of Experimental Zoology. Part A, Ecological and Integrative Physiology Abbreviated Journal J Exp Zool A Ecol Integr Physiol  
  Volume 329 Issue 8-9 Pages 409-418  
  Keywords Review; Animals; Health  
  Abstract Natural cycles of light and darkness govern the timing of most aspects of animal behavior and physiology. Artificial light at night (ALAN)-a recent and pervasive form of pollution-can mask natural photoperiodic cues and interfere with biological rhythms. One such rhythm vulnerable to perturbation is the sleep-wake cycle. ALAN may greatly influence sleep in humans and wildlife, particularly in animals that sleep predominantly at night. There has been some recent evidence for impacts of ALAN on sleep, but critical questions remain. Some of these can be addressed by adopting approaches already entrenched in sleep research. In this paper, we review the current evidence for impacts of ALAN on sleep, highlight gaps in our understanding, and suggest opportunities for future research.  
  Address La Trobe University, School of Life Sciences, Melbourne, Victoria, Australia  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN (down) 2471-5638 ISBN Medium  
  Area Expedition Conference  
  Notes PMID:29869374 Approved no  
  Call Number GFZ @ kyba @ Serial 1933  
Permanent link to this record
 

 
Author Longcore, T.; Rodriguez, A.; Witherington, B.; Penniman, J.F.; Herf, L.; Herf, M. url  doi
openurl 
  Title Rapid assessment of lamp spectrum to quantify ecological effects of light at night Type Journal Article
  Year 2018 Publication Journal of Experimental Zoology. Part A, Ecological and Integrative Physiology Abbreviated Journal J Exp Zool A Ecol Integr Physiol  
  Volume 329 Issue 8-9 Pages 511-521  
  Keywords Lighting; Ecology; Animals; Vision  
  Abstract For many decades, the spectral composition of lighting was determined by the type of lamp, which also influenced potential effects of outdoor lights on species and ecosystems. Light-emitting diode (LED) lamps have dramatically increased the range of spectral profiles of light that is economically viable for outdoor lighting. Because of the array of choices, it is necessary to develop methods to predict the effects of different spectral profiles without conducting field studies, especially because older lighting systems are being replaced rapidly. We describe an approach to predict responses of exemplar organisms and groups to lamps of different spectral output by calculating an index based on action spectra from behavioral or visual characteristics of organisms and lamp spectral irradiance. We calculate relative response indices for a range of lamp types and light sources and develop an index that identifies lamps that minimize predicted effects as measured by ecological, physiological, and astronomical indices. Using these assessment metrics, filtered yellow-green and amber LEDs are predicted to have lower effects on wildlife than high pressure sodium lamps, while blue-rich lighting (e.g., K >/= 2200) would have greater effects. The approach can be updated with new information about behavioral or visual responses of organisms and used to test new lighting products based on spectrum. Together with control of intensity, direction, and duration, the approach can be used to predict and then minimize the adverse effects of lighting and can be tailored to individual species or taxonomic groups.  
  Address f.lux Software LLC, Los Angeles, California  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN (down) 2471-5638 ISBN Medium  
  Area Expedition Conference  
  Notes PMID:29894022 Approved no  
  Call Number GFZ @ kyba @ Serial 1940  
Permanent link to this record
 

 
Author Donners, M.; van Grunsven, R.H.A.; Groenendijk, D.; van Langevelde, F.; Bikker, J.W.; Longcore, T.; Veenendaal, E. url  doi
openurl 
  Title Colors of attraction: Modeling insect flight to light behavior Type Journal Article
  Year 2018 Publication Journal of Experimental Zoology. Part A, Ecological and Integrative Physiology Abbreviated Journal J Exp Zool A Ecol Integr Physiol  
  Volume 329 Issue 8-9 Pages 434-440  
  Keywords Animals; ecology; Lighting  
  Abstract Light sources attract nocturnal flying insects, but some lamps attract more insects than others. The relation between the properties of a light source and the number of attracted insects is, however, poorly understood. We developed a model to quantify the attractiveness of light sources based on the spectral output. This model is fitted using data from field experiments that compare a large number of different light sources. We validated this model using two additional datasets, one for all insects and one excluding the numerous Diptera. Our model facilitates the development and application of light sources that attract fewer insects without the need for extensive field tests and it can be used to correct for spectral composition when formulating hypotheses on the ecological impact of artificial light. In addition, we present a tool allowing the conversion of the spectral output of light sources to their relative insect attraction based on this model.  
  Address Plant Ecology and Nature Conservation, Wageningen University, Wageningen, The Netherlands  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN (down) 2471-5638 ISBN Medium  
  Area Expedition Conference  
  Notes PMID:29944198 Approved no  
  Call Number GFZ @ kyba @ Serial 1944  
Permanent link to this record
 

 
Author de Jong, M.; Lamers, K.P.; Eugster, M.; Ouyang, J.Q.; Da Silva, A.; Mateman, A.C.; van Grunsven, R.H.A.; Visser, M.E.; Spoelstra, K. url  doi
openurl 
  Title Effects of experimental light at night on extra-pair paternity in a songbird Type Journal Article
  Year 2018 Publication Journal of Experimental Zoology. Part A, Ecological and Integrative Physiology Abbreviated Journal J Exp Zool A Ecol Integr Physiol  
  Volume 329 Issue 8-9 Pages 441-448  
  Keywords animals  
  Abstract Light pollution is increasing worldwide and significantly affects animal behavior. In birds, these effects include advancement of morning activity and onset of dawn song, which may affect extra-pair paternity. Advanced dawn song of males may stimulate females to engage in extra-pair copulations, and the earlier activity onset may affect the males' mate guarding behavior. Earlier work showed an effect of light at night on extra-pair behavior, but this was in an area with other anthropogenic disturbances. Here, we present a two-year experimental study on effects of light at night on extra-pair paternity of great tits (Parus major). Previously dark natural areas were illuminated with white, red, and green LED lamps and compared to a dark control. In 2014, the proportion of extra-pair young in broods increased with distance to the red and white lamps (i.e., at lower light intensities), but decreased with distance to the poles in the dark control. In 2013, we found no effects on the proportion of extra-pair young. The total number of offspring sired by a male was unaffected by artificial light at night in both years, suggesting that potential changes in female fidelity in pairs breeding close to white and red light did not translate into fitness benefits for the males of these pairs. Artificial light at night might disrupt the natural patterns of extra-pair paternity, possibly negates potential benefits of extra-pair copulations and thus could alter sexual selection processes in wild birds.  
  Address Department of Animal Ecology, Netherlands Institute of Ecology (NIOO-KNAW), Wageningen, The Netherlands  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN (down) 2471-5638 ISBN Medium  
  Area Expedition Conference  
  Notes PMID:29952126 Approved no  
  Call Number GFZ @ kyba @ Serial 1953  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: