toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Gaston, K.J.; Holt, L.A. url  doi
openurl 
  Title Nature, extent and ecological implications of night‐time light from road vehicles Type Journal Article
  Year 2018 Publication Journal of Applied Ecology Abbreviated Journal  
  Volume 55 Issue 5 Pages 2296-2307  
  Keywords Animals; Ecology; Lighting; Review  
  Abstract The erosion of night‐time by the introduction of artificial lighting constitutes a profound pressure on the natural environment. It has altered what had for millennia been reliable signals from natural light cycles used for regulating a host of biological processes, with impacts ranging from changes in gene expression to ecosystem processes.

Studies of these impacts have focused almost exclusively on those resulting from stationary sources of light emissions, and particularly streetlights. However, mobile sources, especially road vehicle headlights, contribute substantial additional emissions.

The ecological impacts of light emissions from vehicle headlights are likely to be especially high because these are (1) focused so as to light roadsides at higher intensities than commonly experienced from other sources, and well above activation thresholds for many biological processes; (2) projected largely in a horizontal plane and thus can carry over long distances; (3) introduced into much larger areas of the landscape than experience street lighting; (4) typically broad “white” spectrum, which substantially overlaps the action spectra of many biological processes and (5) often experienced at roadsides as series of pulses of light (produced by passage of vehicles), a dynamic known to have major biological impacts.

The ecological impacts of road vehicle headlights will markedly increase with projected global growth in numbers of vehicles and the road network, increasing the local severity of emissions (because vehicle numbers are increasing faster than growth in the road network) and introducing emissions into areas from which they were previously absent. The effects will be further exacerbated by technological developments that are increasing the intensity of headlight emissions and the amounts of blue light in emission spectra.

Synthesis and applications. Emissions from vehicle headlights need to be considered as a major, and growing, source of ecological impacts of artificial night‐time lighting. It will be a significant challenge to minimise these impacts whilst balancing drivers' needs at night and avoiding risk and discomfort for other road users. Nonetheless, there is potential to identify solutions to these conflicts, both through the design of headlights and that of roads.
 
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN (up) ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number GFZ @ kyba @ Serial 1841  
Permanent link to this record
 

 
Author Cho, CH; Yoon, HK; Kang, SG; Kim, L; Lee, E; Lee, HJ url  doi
openurl 
  Title Impact of Exposure to Dim Light at Night on Sleep in Female and Comparison with Male Subjects Type Journal Article
  Year 2018 Publication Psychiatry Investigation Abbreviated Journal Psychiatry Investig  
  Volume 15 Issue 5 Pages 520-530  
  Keywords Human Health  
  Abstract Light pollution has become a social and health issue. We performed an experimental study to investigate impact of dim light at night (dLAN) on sleep in female subjects, with measurement of salivary melatonin.

Methods:

The 25 female subjects (Group A: 12; Group B: 13 subjects) underwent a nocturnal polysomnography (NPSG) session with no light (Night 1) followed by an NPSG session randomly assigned to two conditions (Group A: 5; Group B: 10 lux) during a whole night of sleep (Night 2). Salivary melatonin was measured before and after sleep on each night. For further investigation, the female and male subjects of our previous study were collected (48 subjects), and differences according to gender were compared.

Results:

dLAN during sleep was significantly associated with decreased total sleep time (TST; F=4.818, p=0.039), sleep efficiency (SE; F=5.072, p=0.034), and Stage R latency (F=4.664, p=0.041) for female subjects, and decreased TST (F=14.971, p<0.001) and SE (F=7.687, p=0.008), and increased wake time after sleep onset (F=6.322, p=0.015) and Stage R (F=5.031, p=0.03), with a night-group interaction (F=4.579, p=0.038) for total sample. However, no significant melatonin changes. There was no significant gender difference of the impact of dLAN on sleep, showing the negative changes in the amount and quality of sleep and the increase in REM sleep in the both gender group under 10 lux condition.

Conclusion:

We found a negative impact of exposure to dLAN on sleep in female as well as in merged subjects. REM sleep showed a pronounced increase under 10 lux than under 5 lux in merged subjects, suggesting the possibility of subtle influences of dLAN on REM sleep.
 
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN (up) ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number GFZ @ kyba @ Serial 1845  
Permanent link to this record
 

 
Author Brelsford, CC; Robson, TM url  doi
openurl 
  Title Blue light advances bud burst in branches of three deciduous tree species under short-day conditions Type Journal Article
  Year 2018 Publication Trees Abbreviated Journal  
  Volume 32 Issue 4 Pages 1157-1164  
  Keywords Plants  
  Abstract During spring, utilising multiple cues allow tree species from temperate and boreal regions to coordinate their bud burst and leaf out, at the right moment to capitalise on favourable conditions for photosynthesis. Whilst the effect of blue light (400–500 nm) has been shown to increase percentage bud burst of axillary shoots of Rosa sp., the effects of blue light on spring-time bud burst of deciduous tree species have not previously been reported. We tested the hypotheses that blue light would advance spring bud burst in tree species, and that late-successional species would respond more than early-successional species, whose bud burst is primarily determined by temperature. The bud development of Alnus glutinosa, Betula pendula, and Quercus robur branches, cut from dormant trees, was monitored under two light treatments of equal photosynthetically active radiation (PAR, 400–700 nm) and temperature, either with or without blue light, under controlled environmental conditions. In the presence of blue light, the mean time required to reach 50% bud burst was reduced by 3.3 days in Betula pendula, 6 days in Alnus glutinosa, and 6.3 days in Quercus robur. This result highlights the potential of the blue region of the solar spectrum to be used as an extra cue that could help plants to regulate their spring phenology, alongside photoperiod and temperature. Understanding how plants combine photoreceptor-mediated cues with other environmental cues such as temperature to control phenology is essential if we are to accurately predict how tree species might respond to climate change.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN (up) ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number GFZ @ kyba @ Serial 1847  
Permanent link to this record
 

 
Author Palmer M; Gibbons R; Bhagavathula R; Holshouser D; Davidson D openurl 
  Title Roadway lighting's impact on altering soybean growth: Volume 1 Type Journal Article
  Year 2017 Publication Illinois Center for Transportation Abbreviated Journal  
  Volume Research Report No. FHWA - ICT - 17 - 010 Issue Pages  
  Keywords plants; Lighting  
  Abstract The impact of roadway lighting on soybean plant growth and development was measured in situ at seven locations in the state of Illinois. The plant data collection included periodic height, reproductive stage, and Normalized Difference Vegetation Index (NDVI), as well as plant moisture content and dried seed weight after harvest. The periodic measurements were made at the same locations over time to determine delays in plant development. The impact of roadway lighting trespass was significant and measurable above thresholds of both horizontal and vertical illuminance as well as a combination of the two. A specification was drafted to minimize the impact of roadway lighting trespass on the soybean, and countermeasures were recommended to control the impact of lighting on the soybean.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN (up) ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number GFZ @ kyba @ Serial 1943  
Permanent link to this record
 

 
Author Grubisic, M. url  doi
openurl 
  Title Waters under Artificial Lights: Does Light Pollution Matter for Aquatic Primary Producers? Type Journal Article
  Year 2018 Publication Limnology and Oceanography Bulletin Abbreviated Journal  
  Volume 27 Issue 3 Pages 76-81  
  Keywords Ecology  
  Abstract Bright night lights have become a symbol of development and prosperity in the modern world. But have you ever wondered how artificial light at night (ALAN) may be affecting living beings in our cities, and how it may be affecting us? As artificial illumination is transforming nocturnal environments around the world, light pollution associated with its use is becoming a topic of increasing interest in the scientific and public communities. Light pollution disrupts natural light regimes in many regions of the world, raising concerns about ecological and health impacts of this novel anthropogenic pressure. Most obviously, ALAN can influence night‐active animals in urban and suburban areas, and most research in this growing field focuses on terrestrial organisms such as bats, birds, and insects. Effects on aquatic ecosystems are much less known. In particular, aquatic primary producers, such as microalgae, cyanobacteria, and plants, have rarely been studied despite their critical positioning in the base of aquatic food webs and the fundamental role that light plays in their ecology. For primary producers, light is a key source of both energy and environmental information; it influences their growth, production, and community structure. ALAN has therefore a large potential to influence their communities and induce bottom‐up changes to aquatic ecosystems and ecosystem functions.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN (up) ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number GFZ @ kyba @ Serial 1966  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: