|   | 
Details
   web
Records
Author Brüning A., Hölker, F., Franke, S., Preuer, T., Kloas, W.
Title Impact of different colours of artificial light at night on melatonin rhythm and gene expression of gonadotropins in European perch Type Journal Article
Year 2016 Publication Science of The Total Environment Abbreviated Journal
Volume 543 Issue Pages 214-222
Keywords Animals
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN (up) ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number LoNNe @ schroer @ Serial 1294
Permanent link to this record
 

 
Author Zamorano, J.; Sánchez de Miguel, A.; Ocaña, F.; Pila-Diez, B.; Gómez Castaño, J.; Pascual, S.; Tapia, C.; Gallego, J.; Fernandez, A.; Nievas, M.
Title Testing sky brightness models against radial dependency: a dense two dimensional survey around the city of Madrid, Spain Type Journal Article
Year 2016 Publication Journal of Quantitative Spectroscopy and Radiative Transfer Abbreviated Journal JQSRT
Volume 181 Issue Pages 52-66
Keywords Skyglow; measurements; light pollution; artificial light at night; modeling; Madrid; Spain
Abstract We present a study of the night sky brightness around the extended metropolitan area of Madrid using Sky Quality Meter (SQM) photometers. The map is the first to cover the spatial distribution of the sky brightness in the center of the Iberian peninsula. These surveys are neccessary to test the light pollution models that predict night sky brightness as a function of the location and brightness of the sources of light pollution and the scattering of light in the atmosphere. We describe the data-retrieval methodology, which includes an automated procedure to measure from a moving vehicle in order to speed up the data collection, providing a denser and wider survey than previous works with similar time frames. We compare the night sky brightness map to the nocturnal radiance measured from space by the DMSP satellite. We find that i) a single source model is not enough to explain the radial evolution of the night sky brightness, despite the predominance of Madrid in size and population, and ii) that the orography of the region should be taken into account when deriving geo-specific models from general first-principles models. We show the tight relationship between these two luminance measures. This finding sets up an alternative roadmap to extended studies over the globe that will not require the local deployment of photometers or trained personnel.
Address Dept. Astrof´ısica y CC. de la Atm´osfera, Universidad Complutense de Madrid, Ciudad Universitaria, 28040 Madrid, Spain
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN (up) ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number IDA @ john @ Serial 1323
Permanent link to this record
 

 
Author Le Tallec, T.; Théry, M.; Perret, M.
Title Melatonin concentrations and timing of seasonal reproduction in male mouse lemurs (Microcebus murinus) exposed to light pollution Type Journal Article
Year 2016 Publication Journal of Mammalogy Abbreviated Journal J of Mammalogy
Volume 97 Issue 3 Pages 753-760
Keywords Animals; light pollution; photobiology; core temperature; locomotor activity; melatonin; Microcebus murinus; primate; testosterone; lemurs; mouse lemur
Abstract Adverse effects of light at night are associated with human health problems and with changes in seasonal reproduction in several species. Owing to its role in the circadian timing system, melatonin production is suspected to mediate excess nocturnal light. To test this hypothesis, we examined the effect of light pollution on the timing of seasonal reproduction on a strict Malagasy long-day breeder, the nocturnal mouse lemur (Microcebus murinus). We randomly exposed 12 males in wintering sexual rest to moonlight or to a light-mimicking nocturnal streetlight for 5 weeks. We monitored urinary 6-sulfatoxymelatonin concentrations (aMT6s), plasma testosterone concentrations, and testis size, and we recorded daily rhythms of core temperature and locomotor activity. In males exposed to light pollution, we observed a significant decrease in urinary aMT6s concentrations associated with changes in daily rhythm profiles and with activation of reproductive function. These results showed that males entered spontaneous sexual recrudescence leading to a summer acclimatization state, which suggests that light at night disrupts perception of day length cues, leading to an inappropriate photoentrainment of seasonal rhythms.
Address UMR 7179 Centre National de la Recherche Scientifique, Muséum National d’Histoire Naturelle , 1 avenue du petit château, 91800 Brunoy, France; thery(at)mnhn.fr
Corporate Author Thesis
Publisher Oxford University Press Place of Publication Editor
Language English Summary Language English Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN (up) ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number IDA @ john @ Serial 1348
Permanent link to this record
 

 
Author Kocifaj, M.; Kómar, L.
Title A role of aerosol particles in forming urban skyglow and skyglow from distant cities Type Journal Article
Year 2016 Publication Monthly Notices of the Royal Astronomical Society Abbreviated Journal MNRAS
Volume 458 Issue 1 Pages 438-448
Keywords Skyglow; scattering; atmospheric effects; artificial light; numerical modeling; GIS-based modeling; light pollution
Abstract Aerosol particles may represent the largest uncertainty about skyglow change in many locations under clear sky conditions. This is because aerosols are ubiquitous in the atmosphere and influence the ground-reaching radiation in different ways depending on their concentrations, origins, shapes, sizes, and compositions. Large particles tend to scatter in Fraunhofer diffraction regime, while small particles can be treated in terms of Rayleigh formalism. However, the role of particle microphysics in forming the skyglow still remains poorly quantified. We have shown in this paper that the chemistry is somehow important for backscattering from large particles that otherwise work as efficient attenuators of light pollution if composed of absorbing materials. The contribution of large particles to the urban skyglow diminishes as they become more spherical in shape. The intensity of backscattering from non-absorbing particles is more-or-less linearly decreasing function of particle radius even if number size distribution is inversely proportional to the fourth power of particle radius. This is due to single particle backscattering that generally increases steeply as the particle radius approaches large values. Forward scattering depends on the particle shape but is independent of the material composition, thus allowing for a simplistic analytical model of skyglow from distant cities. The model we have developed is based on mean value theorem for integrals and incorporates the parametrizable Garstang's emission pattern, intensity decay along optical beam path, and near-forward scattering in an atmospheric environment. Such model can be used by modellers and experimentalists for rapid estimation of skyglow from distant light sources.
Address ICA, Slovak Academy of Sciences, Dúbravská Road 9, 845 03 Bratislava, Slovak Republic; kocifaj(at)savba.sk
Corporate Author Thesis
Publisher Oxford Journals Place of Publication Editor
Language English Summary Language English Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN (up) ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number IDA @ john @ Serial 1361
Permanent link to this record
 

 
Author Grove, L.
Title Reducing Acadia's Light Pollution Type Manuscript
Year 2016 Publication Abbreviated Journal
Volume Issue Pages
Keywords Conservation; Society; Economics; Acadia National Park; Maine; benefit cost analysis; astrotourism; contingent valuation method; dark sky places; dark sky park
Abstract Acadia National Park is among the most visited national parks in the United States, attracting millions of people per year. Thousands of those visitors come to the park for “astro-tourism,” as Acadia has become one of the premier stargazing locations on the east coast. There remains, however, the continued threat from light pollution from the surrounding communities that negatively affects Acadia's darkness, contributing to a lesser visitor experience and potentially harming native ecosystems. Although park management and community organizations have engaged in significant efforts to decrease Acadia's nighttime light levels and raise awareness among visitors and locals regarding the importance of darkness, the park still seek to continue to decrease light pollution. This report developed policy options that could help solve the long-term policy goal of decreasing nighttime lighting levels within and around Acadia while also using the International Dark-Sky Association's Dark-Sky Park designation requirements as a reasonable, short-term policy benchmark.

Working within existing organizations, the policy options crafted to address Acadia’s nighttime lighting levels were analyzed both qualitatively through a criteria evaluation and quantitatively through a Benefit Cost Analysis.

The options included 1) the formation of a Darkness Coalition within the League of Towns, 2) a reimagining of the Worcester Polytechnic Institute Dark-Sky Project into the Dark-Sky Taskforce, 3) the creation of a Lighting Consultant position paid through the Friends of Acadia Wild Acadia initiative, and 4) the combination of Coalition and the Taskforce into the League of Towns – Dark-Sky Partnership (LOT-DSP). The report recommends the adoption of Option 4 – the creation of the LOT – DSP. While this option does not provide the greatest estimated monetary net value compared to the Status Quo in the quantitative evaluation, it still provides an estimated benefit of about $105 million over the course of five years and is the strongest option in the qualitative analysis. The LOT – DSP provides the best opportunity for Acadia to achieve legitimate and long-lasting nighttime light level reduction.
Address Frank Batten School of Leadership and Public Policy, Garrett Hall, 235 McCormick Road, P.O. Box 400893, Charlottesville, VA 22904-4893 USA; locher.grove(at)gmail.com
Corporate Author Thesis Master's thesis
Publisher University of Virginia Place of Publication Charlottesville Editor
Language English Summary Language English Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN (up) ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number IDA @ john @ Serial 1449
Permanent link to this record