|   | 
Details
   web
Records
Author Zhe Song and Xiaoming Li
Title Hazards, Causes and Legal Governance Measures of China's Urban Light Pollution Type Journal Article
Year 2017 Publication Nature Environment and Pollution Technology Abbreviated Journal
Volume 16 Issue 3 Pages 975-980
Keywords Regulation
Abstract Urban light pollution, which poses a threat to people’s production, life, and physical and mental health, is becoming increasingly serious and gradually forms a new type of environmental pollution. In order to further analyse the hazards and causes of China’s urban light pollution and explore its legal governance measures, this study reviews foreign literature on hazards and causes of urban light pollution, summarizes the types and causes of the pollution in China, and provides specific control measures from the perspective of legal governance. Research results in the country and abroad show that light pollution is caused by development, which has a serious negative impact on the normal life of urban residents. The hazards of urban light pollution are manifested in four aspects, such as damaging human health, affecting the natural ecological environment, affecting normal operation of urban traffic, and causing serious waste of energy. Urban light pollution is caused by the lack of systematized urban building light source design work, excessive use of electronic products with the development of science and technology, weak public awareness of environmental protection, and the delay of laws and regulations. Some legal measures to control light pollution are presented as follows: Perfecting the administrative system and environmental supervision system in legislation, innovating the legislation system of light pollution prevention, formulating strict civil liability for light pollution, and further formulating a single law on light pollution control. The results of this study have important reference value for taking measures predictably to avoid the occurrence of light pollution during urban construction design, for the macro-control of urban planning and management departments, and for promoting the concept of urban environmental protection and energy conservation and sustainable urban development.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN (up) ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number LoNNe @ kyba @; GFZ @ kyba @ Serial 1748
Permanent link to this record
 

 
Author Kocifaj, M.
Title Towards a Comprehensive City Emission Function (CCEF) Type Journal Article
Year 2018 Publication Journal of Quantitative Spectroscopy and Radiative Transfer Abbreviated Journal JQSRT
Volume 205 Issue Pages 253-266
Keywords Lighting; Skyglow
Abstract The comprehensive city emission function (CCEF) is developed for a heterogeneous light-emitting or blocking urban environments, embracing any combination of input parameters that characterize linear dimensions in the system (size and distances between buildings or luminaires), properties of light-emitting elements (such as luminous building façades and street lighting), ground reflectance and total uplight-fraction, all of these defined for an arbitrarily sized 2D area. The analytical formula obtained is not restricted to a single model class as it can capture any specific light-emission feature for wide range of cities. The CCEF method is numerically fast in contrast to what can be expected of other probabilistic approaches that rely on repeated random sampling. Hence the present solution has great potential in light-pollution modeling and can be included in larger numerical models. Our theoretical findings promise great progress in light-pollution modeling as this is the first time an analytical solution to city emission function (CEF) has been developed that depends on statistical mean size and height of city buildings, inter-building separation, prevailing heights of light fixtures, lighting density, and other factors such as e.g. luminaire light output and light distribution, including the amount of uplight, and representative city size. The model is validated for sensitivity and specificity pertinent to combinations of input parameters in order to test its behavior under various conditions, including those that can occur in complex urban environments. It is demonstrated that the solution model succeeds in reproducing a light emission peak at some elevated zenith angles and is consistent with reduced rather than enhanced emission in directions nearly parallel to the ground.
Address
Corporate Author Thesis
Publisher ScienceDirect Place of Publication Editor
Language English Summary Language English Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN (up) ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number LoNNe @ kyba @ Serial 1757
Permanent link to this record
 

 
Author Clanton, N.; Gibbons, R.; Garcia, J.; Barber, M.
Title Seattle LED Adaptive Lighting Study Type Report
Year 2014 Publication Northwest Energy Efficiency Alliance Abbreviated Journal NEEA
Volume Issue E14-286 Pages
Keywords Public Safety; Lighting; Planning; Vision
Abstract The Northwest Energy Efficiency Alliance (NEEA) and the City of Seattle partnered to evaluate the future of solid state street lighting in the Pacific Northwest with a two-night demonstration in Seattle's Ballard neighborhood in March 2012. The study evaluates the effectiveness of LED streetlights on nighttime driver object detection visibility as function of light source spectral distribution (color temperature in degrees K) and light distribution. Clanton & Associates and VTTI also evaluated adaptive lighting (tuning of streetlights during periods of reduced vehicular and pedestrian activity) at three levels: one hundred percent of full light output, fifty percent of full light output, and twenty-five percent of full light output. The study, led by Clanton & Associates, Continuum Industries, and the VTTI, built upon previous visual performance studies conducted in Anchorage, Alaska; San Diego, California; and San Jose, California. The use of LED technology for city street lighting is becoming more widespread. While these lights are primarily touted for their energy efficiency, the combination of LEDs with advanced control technology, changes to lighting criteria, and a better understanding of human mesopic (low light level) visibility creates an enormous potential for energy savings and improved motorist and pedestrian visibility and safety. Data from these tests support the following statements: LED luminaires with a correlated color temperature of 4100K provide the highest detection distance, including statistically significantly better detection distance when compared to HPS luminaires of higher wattage. The non-uniformity of the lighting on the roadway surface provides a visibility enhancement and greater contrast for visibility. Contrast of objects, both positive and negative, is a better indicator of visibility than is average luminance level. Dimming the LED luminaires to fifty percent of IES RP-8 levels did not significantly reduce object detection distance in dry pavement conditions. Participants perceived dimming of sidewalks as less acceptable than dimming to the same level on the roadway. Asymmetric lighting did reduce glare and performed similarly to the symmetric lighting at the same color temperature (4100K).
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language English Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN (up) ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number LoNNe @ kyba @ Serial 1763
Permanent link to this record
 

 
Author S Fotios, J Uttley
Title Illuminance required to detect a pavement obstacle of critical size Type Journal Article
Year 2018 Publication Lighting Research & Technology Abbreviated Journal
Volume 50 Issue Pages 390-404
Keywords Vision; Lighting
Abstract This paper investigates the illuminance needed to detect trip hazards for pedestrians walking after dark. In previous work, it was assumed that the critical obstacle height is 25 mm: further review of accident data and foot clearance data suggests instead that 10 mm is the critical height. Eye tracking records suggest a tendency for obstacles to be detected approximately 3.4 m ahead. Interpretation of obstacle detection data suggests horizontal photopic illuminances of up to 0.9 lux are required for peripheral detection of a 10 mm obstacle 3.4 m ahead, according to the scotopic/photopic ratio of the lighting and the age of the observer.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN (up) ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number LoNNe @ kyba @ Serial 1765
Permanent link to this record
 

 
Author Fotios, S., Price, T
Title Road lighting and accidents: Why lighting is not the only answer Type Journal Article
Year 2017 Publication Lighting Journal Abbreviated Journal
Volume 82 Issue 5 Pages 22-26
Keywords Lighting; Public Safety
Abstract Tony Price and Steve Fotios point out that while road lighting can be a significant counter measure to accidents, and that higher levels might help, the presence of road lighting does not guarantee all accidents will be avoided.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN (up) ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number LoNNe @ kyba @ Serial 1767
Permanent link to this record