Records |
Author |
Nang, E.E.K.; Abuduxike, G.; Posadzki, P.; Divakar, U.; Visvalingam, N.; Nazeha, N.; Dunleavy, G.; Christopoulos, G.I.; Soh, C.-K.; Jarbrink, K.; Soljak, M.; Car, J. |
Title |
Review of the potential health effects of light and environmental exposures in underground workplaces |
Type |
Journal Article |
Year |
2019 |
Publication |
Tunnelling and Underground Space Technology |
Abbreviated Journal |
Tunnelling and Underground Space Technology |
Volume |
84 |
Issue  |
|
Pages |
201-209 |
Keywords |
Human Health; Review |
Abstract |
Underground workplaces are an important element in modern urban planning. As a result, an increasing but unquantified proportion of the population is being regularly exposed to them. We narratively reviewed the literature on the range of possible environmental exposures, and the possible health effects, to identify future research directions. There is a large but mainly observational research literature on likely underground exposures, including effects of artificial lighting, shift working and light at night on circadian disruptions and associated health effects. There are five studies comparing underground and aboveground environments. Shift working, artificial lighting and poor sleep quality leading to circadian disruption is one physiologic pathway. Working underground may increase exposure to these risks, and may also be associated with vitamin D deficiency, sick building syndrome, excessive noise, radon exposure, and negative psychological effects. In order to plan appropriate interventions, we need to expand our knowledge of the health effects of underground environments. Larger and longer-term studies are required to measure a range of human factors, environmental exposures and confounders. Controlled trials with health economic analyses of new lighting technologies are also required. |
Address |
|
Corporate Author |
|
Thesis |
|
Publisher |
|
Place of Publication |
|
Editor |
|
Language |
|
Summary Language |
|
Original Title |
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
Series Volume |
|
Series Issue |
|
Edition |
|
ISSN |
0886-7798 |
ISBN |
|
Medium |
|
Area |
|
Expedition |
|
Conference |
|
Notes |
|
Approved |
no |
Call Number |
GFZ @ kyba @ |
Serial |
2112 |
Permanent link to this record |
|
|
|
Author |
McGlashan, E.M.; Poudel, G.R.; Vidafar, P.; Drummond, S.P.A.; Cain, S.W. |
Title |
Imaging Individual Differences in the Response of the Human Suprachiasmatic Area to Light |
Type |
Journal Article |
Year |
2018 |
Publication |
Frontiers in Neurology |
Abbreviated Journal |
Front. Neurol. |
Volume |
9 |
Issue  |
|
Pages |
|
Keywords |
Human Health |
Abstract |
Circadian disruption is associated with poor health outcomes, including sleep and mood disorders. The suprachiasmatic nucleus (SCN) of the anterior hypothalamus acts as the master biological clock in mammals, regulating circadian rhythms throughout the body. The clock is synchronized to the day/night cycle via retinal light exposure. The BOLD-fMRI response of the human suprachiasmatic area to light has been shown to be greater in the night than in the day, consistent with the known sensitivity of the clock to light at night. Whether the BOLD-fMRI response of the human suprachiasmatic area to light is related to a functional outcome has not been demonstrated. In a pilot study (n = 10), we investigated suprachiasmatic area activation in response to light in a 30 s block-paradigm of lights on (100 lux) and lights off (< 1 lux) using the BOLD-fMRI response, compared to each participant's melatonin suppression response to moderate indoor light (100 lux). We found a significant correlation between activation in the suprachiasmatic area in response to light in the scanner and melatonin suppression, with increased melatonin suppression being associated with increased suprachiasmatic area activation in response to the same light level. These preliminary findings are a first step toward using imaging techniques to measure individual differences in circadian light sensitivity, a measure that may have clinical relevance in understanding vulnerability in disorders that are influenced by circadian disruption. |
Address |
|
Corporate Author |
|
Thesis |
|
Publisher |
|
Place of Publication |
|
Editor |
|
Language |
|
Summary Language |
|
Original Title |
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
Series Volume |
|
Series Issue |
|
Edition |
|
ISSN |
1664-2295 |
ISBN |
|
Medium |
|
Area |
|
Expedition |
|
Conference |
|
Notes |
|
Approved |
no |
Call Number |
NC @ ehyde3 @ |
Serial |
2114 |
Permanent link to this record |
|
|
|
Author |
Zapata, M.J.; Sullivan, S.M.P.; Gray, S.M. |
Title |
Artificial Lighting at Night in Estuaries—Implications from Individuals to Ecosystems |
Type |
Journal Article |
Year |
2018 |
Publication |
Estuaries and Coasts |
Abbreviated Journal |
|
Volume |
In press |
Issue  |
|
Pages |
|
Keywords |
Animals; Ecology |
Abstract |
Artificial lighting at night (ALAN) produced by urban, industrial, and roadway lighting, as well as other sources, has dramatically increased in recent decades, especially in coastal environments that support dense human populations. Artificial “lightscapes” are characterized by distinct spatial, temporal, and spectral patterns that can alter natural patterns of light and dark with consequences across levels of biological organization. At the individual level, ALAN can elicit a suite of physiological and behavioral responses associated with light-mediated processes such as diel activity patterns and predator-prey interactions. ALAN has also been shown to modify community composition and trophic structure, with implications for ecosystem-level processes including primary productivity, nutrient cycling, and the energetic linkages between aquatic and terrestrial systems. Here, we review the state of the science relative to the impacts of ALAN on estuaries, which is an important step in assessing the long-term sustainability of coastal regions. We first consider how multiple properties of ALAN (e.g., intensity and spectral content) influence the interaction between physiology and behavior of individual estuarine biota (drawing from studies on invertebrates, fishes, and birds). Second, we link individual- to community- and ecosystem-level responses, with a focus on the impacts of ALAN on food webs and implications for estuarine ecosystem functions. Coastal aquatic communities and ecosystems have been identified as a key priority for ALAN research, and a cohesive research framework will be critical for understanding and mitigating ecological consequences. |
Address |
|
Corporate Author |
|
Thesis |
|
Publisher |
|
Place of Publication |
|
Editor |
|
Language |
|
Summary Language |
|
Original Title |
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
Series Volume |
|
Series Issue |
|
Edition |
|
ISSN |
|
ISBN |
|
Medium |
|
Area |
|
Expedition |
|
Conference |
|
Notes |
|
Approved |
no |
Call Number |
NC @ ehyde3 @ |
Serial |
2116 |
Permanent link to this record |
|
|
|
Author |
Rea, M.; Skinner, N.; Bullough, J. |
Title |
A Novel Barricade Warning Light System Using Wireless Communications |
Type |
Journal Article |
Year |
2018 |
Publication |
SAE Technical Paper 2018-01-5036 |
Abbreviated Journal |
|
Volume |
In press |
Issue  |
|
Pages |
|
Keywords |
Lighting; Safety |
Abstract |
Workers in construction and transportation sectors are at increased risk for work-related injuries and fatalities by nearby traffic. Barricade-mounted warning lights meeting current specifications do not always provide consistent and adequate visual guidance to drivers and can contribute to glare and reduced safety. Through an implementation of sensors and wireless communications, a novel, intelligent set of warning lights and a tablet-based interface were developed. The lights modulate between 100% and 10% of maximum intensity rather than between 100% and off in order to improve visual guidance and adjust their overall intensity based on ambient conditions. The lights can be synchronized or operated in sequential flash patterns at any frequency between 1 and 4 Hz, and sequential patterns automatically update based on global positioning satellite (GPS) locations displayed in the control interface. A successful field demonstration of the system verified that its functions were viewed favorably by transportation safety personnel. |
Address |
|
Corporate Author |
|
Thesis |
|
Publisher |
|
Place of Publication |
|
Editor |
|
Language |
|
Summary Language |
|
Original Title |
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
Series Volume |
|
Series Issue |
|
Edition |
|
ISSN |
|
ISBN |
|
Medium |
|
Area |
|
Expedition |
|
Conference |
|
Notes |
|
Approved |
no |
Call Number |
NC @ ehyde3 @ |
Serial |
2117 |
Permanent link to this record |
|
|
|
Author |
Pauwels, J.; Le Viol, I.; Azam, C.; Valet, N.; Julien, J.-F.; Bas, Y.; Lemarchand, C.; Sanchez de Miguel, A.; Kerbiriou, C. |
Title |
Accounting for artificial light impact on bat activity for a biodiversity-friendly urban planning |
Type |
Journal Article |
Year |
2019 |
Publication |
Landscape and Urban Planning |
Abbreviated Journal |
Landscape and Urban Planning |
Volume |
183 |
Issue  |
|
Pages |
12-25 |
Keywords |
Animals; Remote Sensing |
Abstract |
Light pollution constitutes a major threat to biodiversity by decreasing habitat quality and landscape connectivity for nocturnal species. While there is an increasing consideration of biodiversity in urban management policies, the impact of artificial light is poorly accounted for. This is in a large part due to the lack of quantitative information and relevant guidelines to limit its negative effects. Here we compared the potential of two sources of information on light pollution, remote sensing (nocturnal picture taken from the International Space Station ISS) and ground-based (location of streetlights) data, to measure its impact on bats. Our aims were to (i) evaluate how light pollution affected Pipistrellus pipistrellus activity at the city scale, (ii) determine which source of information was the most relevant to measure light pollution’s effect and (iii) define a reproducible methodology applicable in land management to account for biodiversity in lighting planning. We used citizen science data to model the activity of P. pipistrellus, a species considered light tolerant, within three cities of France while accounting for artificial light through a variable based on either source of information. We showed that at the city scale, P. pipistrellus activity is negatively impacted by light pollution irrespective of the light variable used. This detrimental effect was better described by variables based on ISS pictures than on streetlights location. Our methodology can be easily reproduced and used in urban planning to help take the impact of light pollution into consideration and promote a biodiversity-friendly management of artificial light. |
Address |
|
Corporate Author |
|
Thesis |
|
Publisher |
|
Place of Publication |
|
Editor |
|
Language |
|
Summary Language |
|
Original Title |
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
Series Volume |
|
Series Issue |
|
Edition |
|
ISSN |
0169-2046 |
ISBN |
|
Medium |
|
Area |
|
Expedition |
|
Conference |
|
Notes |
|
Approved |
no |
Call Number |
GFZ @ kyba @ |
Serial |
2118 |
Permanent link to this record |