toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Gonzalez, T.J.; Lu, Y.; Boswell, M.; Boswell, W.; Medrano, G.; Walter, S.; Ellis, S.; Savage, M.; Varga, Z.M.; Lawrence, C.; Sanders, G.; Walter, R.B. url  doi
openurl 
  Title Fluorescent light exposure incites acute and prolonged immune responses in Zebrafish (Danio rerio) skin Type Journal Article
  Year 2018 Publication Comparative Biochemistry and Physiology. Toxicology & Pharmacology : CBP Abbreviated Journal Comp Biochem Physiol C Toxicol Pharmacol  
  Volume 208 Issue (up) Pages 87-95  
  Keywords Animals  
  Abstract Artificial light produces an emission spectrum that is considerably different than the solar spectrum. Artificial light has been shown to affect various behavior and physiological processes in vertebrates. However, there exists a paucity of data regarding the molecular genetic effects of artificial light exposure. Previous studies showed that one of the commonly used fluorescent light source (FL; 4100K or “cool white”) can affect signaling pathways related to maintenance of circadian rhythm, cell cycle progression, chromosome segregation, and DNA repair/recombination in the skin of male Xiphophorus maculatus. These observations raise questions concerning the kinetics of the FL induced gene expression response, and which biological functions become modulated at various times after light exposure. To address these questions, we exposed zebrafish to 4100K FL and utilized RNASeq to assess gene expression changes in skin at various times (1 to 12h) after FL exposure. We found 4100K FL incites a robust early (1-2h) transcriptional response, followed by a more protracted late response (i.e., 4-12h). The early transcriptional response involves genes associated with cell migration/infiltration and cell proliferation as part of an overall increase in immune function and inflammation. The protracted late transcriptional response occurs within gene sets predicted to maintain and perpetuate the inflammatory response, as well as suppression of lipid, xenobiotic, and melatonin metabolism.  
  Address Xiphophorus Genetic Stock Center, Department of Chemistry and Biochemistry, 419 Centennial Hall, Texas State University, 601 University Drive, San Marcos, TX 78666, USA. Electronic address: RWalter@txstate.edu  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1532-0456 ISBN Medium  
  Area Expedition Conference  
  Notes PMID:28965927 Approved no  
  Call Number LoNNe @ kyba @ Serial 1740  
Permanent link to this record
 

 
Author Albreiki, Mohammed S. url  openurl
  Title The effects of light at night and/or melatonin on hormones, metabo- lites, appetite control, vascular function, and behavioural responses. Type Journal Article
  Year 2017 Publication University of Surrey Abbreviated Journal  
  Volume Issue (up) Pages  
  Keywords Human Health  
  Abstract Light at night (LAN) is a major factor in disruption of SCN function, including melatonin suppression. Melatonin has been linked to a variety of biological processes such as lipid and glucose metabolism, vascular parameters, appetite, and behaviour. However, few human studies have investigated the effect of LAN and suppressed melatonin prior to and after an evening meal. The current thesis aims to investigate the impact of light at night and/or mela- tonin on hormones, metabolites, appetite, vascular function, and behaviour prior to and after an evening test meal in healthy participants. The first study investigated the effect of dim or bright light conditions on hor- mones, metabolites, appetite, vascular function and behavioural responses. Glucose tolerance and insulin sensitivity were reduced, lipid profiles altered and salivary melatonin suppressed under bright light compared to dim light conditions. Subjec- tive mood was improved and appetite scores increased in bright light. No differences were seen in vascular parameters. Although clear differences were apparent it could not be determined whether the effects were due to the light at night, the absence of melatonin or a combination of the two. The second study involved three conditions with the administration of exogenous melatonin 90 mins before the evening test meal under bright and dim light conditions compared to bright light alone with the consequent melatonin suppression. Glucose tolerance and insulin sensitivity were reduced and lipid profile altered in bright light when melatonin was suppressed compared to the two conditions with exogenous melatonin. Mood was improved and appetite increased with lower leptin levels and elevated wrist temperature with bright light and suppressed melatonin. Statistical analysis showed that the major effects were due to melatonin. These studies demonstrate a possible role for melatonin in glucose tolerance, insulin sensitivity and lipid metabolism when eating late at night which may have implications for shift-workers.  
  Address  
  Corporate Author Thesis Ph.D. thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number LoNNe @ kyba @; GFZ @ kyba @ Serial 1747  
Permanent link to this record
 

 
Author Kocifaj, M. url  doi
openurl 
  Title Towards a Comprehensive City Emission Function (CCEF) Type Journal Article
  Year 2018 Publication Journal of Quantitative Spectroscopy and Radiative Transfer Abbreviated Journal JQSRT  
  Volume 205 Issue (up) Pages 253-266  
  Keywords Lighting; Skyglow  
  Abstract The comprehensive city emission function (CCEF) is developed for a heterogeneous light-emitting or blocking urban environments, embracing any combination of input parameters that characterize linear dimensions in the system (size and distances between buildings or luminaires), properties of light-emitting elements (such as luminous building façades and street lighting), ground reflectance and total uplight-fraction, all of these defined for an arbitrarily sized 2D area. The analytical formula obtained is not restricted to a single model class as it can capture any specific light-emission feature for wide range of cities. The CCEF method is numerically fast in contrast to what can be expected of other probabilistic approaches that rely on repeated random sampling. Hence the present solution has great potential in light-pollution modeling and can be included in larger numerical models. Our theoretical findings promise great progress in light-pollution modeling as this is the first time an analytical solution to city emission function (CEF) has been developed that depends on statistical mean size and height of city buildings, inter-building separation, prevailing heights of light fixtures, lighting density, and other factors such as e.g. luminaire light output and light distribution, including the amount of uplight, and representative city size. The model is validated for sensitivity and specificity pertinent to combinations of input parameters in order to test its behavior under various conditions, including those that can occur in complex urban environments. It is demonstrated that the solution model succeeds in reproducing a light emission peak at some elevated zenith angles and is consistent with reduced rather than enhanced emission in directions nearly parallel to the ground.  
  Address  
  Corporate Author Thesis  
  Publisher ScienceDirect Place of Publication Editor  
  Language English Summary Language English Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number LoNNe @ kyba @ Serial 1757  
Permanent link to this record
 

 
Author Tosini, G.; Ferguson, I.; Tubota, K. url  openurl
  Title Effects of blue light on the circadian system and eye physiology Type Journal Article
  Year 2016 Publication Molecular Vision Abbreviated Journal Mol Vis  
  Volume 22 Issue (up) Pages 61-72  
  Keywords Vision; blue light; Circadian Rhythm; eye; physiology  
  Abstract Light-emitting diodes (LEDs) have been used to provide illumination in industrial and commercial environments. LEDs are also used in TVs, computers, smart phones, and tablets. Although the light emitted by most LEDs appears white, LEDs have peak emission in the blue light range (400–490 nm). The accumulating experimental evidence has indicated that exposure to blue light can affect many physiologic functions, and it can be used to treat circadian and sleep dysfunctions. However, blue light can also induce photoreceptor damage. Thus, it is important to consider the spectral output of LED-based light sources to minimize the danger that may be associated with blue light exposure. In this review, we summarize the current knowledge of the effects of blue light on the regulation of physiologic functions and the possible effects of blue light exposure on ocular health.  
  Address Department of Pharmacology and Toxicology and Neuroscience Institute, Morehouse School of Medicine, Atlanta, GA  
  Corporate Author Thesis  
  Publisher NCBI Place of Publication Editor  
  Language English Summary Language English Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1090-0535 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number IDA @ john @ Serial 2216  
Permanent link to this record
 

 
Author S Fotios, J Uttley url  doi
openurl 
  Title Illuminance required to detect a pavement obstacle of critical size Type Journal Article
  Year 2018 Publication Lighting Research & Technology Abbreviated Journal  
  Volume 50 Issue (up) Pages 390-404  
  Keywords Vision; Lighting  
  Abstract This paper investigates the illuminance needed to detect trip hazards for pedestrians walking after dark. In previous work, it was assumed that the critical obstacle height is 25 mm: further review of accident data and foot clearance data suggests instead that 10 mm is the critical height. Eye tracking records suggest a tendency for obstacles to be detected approximately 3.4 m ahead. Interpretation of obstacle detection data suggests horizontal photopic illuminances of up to 0.9 lux are required for peripheral detection of a 10 mm obstacle 3.4 m ahead, according to the scotopic/photopic ratio of the lighting and the age of the observer.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number LoNNe @ kyba @ Serial 1765  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: