Records |
Author |
Kolláth, Z.; Száz, D.; Kolláth, K.; Tong, K.P. |
Title |
Light Pollution Monitoring and Sky Colours |
Type |
Journal Article |
Year |
2020 |
Publication |
Journal of Imaging |
Abbreviated Journal |
J. Imaging |
Volume |
6 |
Issue |
10 |
Pages |
104 |
Keywords  |
Skyglow; Instrumentation; light pollution; imaging radiometry; colorimetry |
Abstract |
The measurement of night sky quality has become an important task in nature conservation. The primary device used for this task can be a calibrated digital camera. In addition, colour information can be derived from sky photography. In this paper, we provide a test on a concept to gather information about the possible sources of night sky brightness based on digital camera images. This method helps to understand changes in night sky quality due to natural and artificial changes in the environment. We demonstrate that a well-defined colour–colour diagram can differentiate between the different natural and artificial sources of night sky radiance. The colour information can be essential when interpreting long-term evolution of light pollution measurements. |
Address |
Department of Physics, Eötvös Loránd University (ELTE) BDPK, 9700 Szombathely, Hungary; zkollath( at ) gmail.com |
Corporate Author |
|
Thesis |
|
Publisher |
MDPI |
Place of Publication |
|
Editor |
|
Language |
English |
Summary Language |
English |
Original Title |
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
Series Volume |
|
Series Issue |
|
Edition |
|
ISSN |
2313-433X |
ISBN |
|
Medium |
|
Area |
|
Expedition |
|
Conference |
|
Notes |
|
Approved |
no |
Call Number |
IDA @ john @ |
Serial |
3170 |
Permanent link to this record |
|
|
|
Author |
Kyba, C.C.M.; Bouroussis, C.; Canal-Domingo, R.; Falchi, F.; Giacomelli, A.; Hänel, A.; Kolláth, Z.; Massetti, L.; Ribas, S.J.; Spoelstra, H.; Tong, K.P.; Wuchterl, G. |
Title |
Report of the 2015 LoNNe Intercomparison Campaign |
Type |
Journal Article |
Year |
2015 |
Publication |
|
Abbreviated Journal |
|
Volume |
|
Issue |
|
Pages |
|
Keywords  |
skyglow; instrumentation |
Abstract |
|
Address |
|
Corporate Author |
|
Thesis |
|
Publisher |
|
Place of Publication |
|
Editor |
|
Language |
|
Summary Language |
|
Original Title |
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
Series Volume |
|
Series Issue |
|
Edition |
|
ISSN |
|
ISBN |
|
Medium |
|
Area |
|
Expedition |
|
Conference |
|
Notes |
|
Approved |
no |
Call Number |
LoNNe @ kyba @; IDA @ john @; GFZ @ kyba @ |
Serial |
1255 |
Permanent link to this record |
|
|
|
Author |
Jechow, A.; Ribas, S.J.; Domingo, R.C.; Hölker, F.; Kolláth, Z.; Kyba, C.C.M. |
Title |
Tracking the dynamics of skyglow with differential photometry using a digital camera with fisheye lens |
Type |
Journal Article |
Year |
2018 |
Publication |
Journal of Quantitative Spectroscopy and Radiative Transfer |
Abbreviated Journal |
Journal of Quantitative Spectroscopy and Radiative Transfer |
Volume |
209 |
Issue |
|
Pages |
212-223 |
Keywords  |
Skyglow; Instrumentation |
Abstract |
rtificial skyglow is dynamic due to changing atmospheric conditions and the switching on and off of artificial lights throughout the night. Street lights as well as the ornamental illumination of historical sites and buildings are sometimes switched off at a certain time to save energy. Ornamental lights in particular are often directed upwards, and can therefore have a major contribution towards brightening of the night sky. Here we use differential photometry to investigate the change in night sky brightness and illuminance during an automated regular switch-off of ornamental light in the town of Balaguer and an organized switch-off of all public lights in the village of Àger, both near Montsec Astronomical Park in Spain. The sites were observed during two nights with clear and cloudy conditions using a DSLR camera and a fisheye lens. A time series of images makes it possible to track changes in lighting conditions and sky brightness simultaneously. During the clear night, the ornamental lights in Balaguer contribute over 20% of the skyglow at zenith at the observational site. Furthermore, we are able to track very small changes in the ground illuminance on a cloudy night near Àger. |
Address |
|
Corporate Author |
|
Thesis |
|
Publisher |
|
Place of Publication |
|
Editor |
|
Language |
|
Summary Language |
|
Original Title |
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
Series Volume |
|
Series Issue |
|
Edition |
|
ISSN |
0022-4073 |
ISBN |
|
Medium |
|
Area |
|
Expedition |
|
Conference |
|
Notes |
|
Approved |
no |
Call Number |
LoNNe @ kyba @ |
Serial |
1807 |
Permanent link to this record |
|
|
|
Author |
Bouroussis, C.A.; Topalis, F.V. |
Title |
The effect of the spectral response of measurement instruments in the assessment of night sky brightness |
Type |
Journal Article |
Year |
2018 |
Publication |
Journal of Quantitative Spectroscopy and Radiative Transfer |
Abbreviated Journal |
Journal of Quantitative Spectroscopy and Radiative Transfer |
Volume |
216 |
Issue |
|
Pages |
56-69 |
Keywords  |
Skyglow; Instrumentation |
Abstract |
This paper deals with the errors and uncertainties in skyglow measurements caused by the variation of sky's spectrum. It considers the theoretical spectral response of common instruments that are used for light pollution assessment. Various types of light sources were used in this investigation. This study calculates the spectral mismatch errors and the corresponding correction factors for each combination of instrument and light source. The calculation method is described and the results are presented in multiple figures. Calculated data show a big variation in potential errors that can be introduced when comparing readings of diverse instruments without considering the sky spectrum variation. This makes the spectral data of the sky a mandatory input to the dark sky assessment. Useful conclusions, related to instruments with better or worse behaviour, are derived from the calculations. The paper also includes suggestions on how to conduct multi-instrument measurements with or without spectral data. |
Address |
|
Corporate Author |
|
Thesis |
|
Publisher |
|
Place of Publication |
|
Editor |
|
Language |
|
Summary Language |
|
Original Title |
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
Series Volume |
|
Series Issue |
|
Edition |
|
ISSN |
0022-4073 |
ISBN |
|
Medium |
|
Area |
|
Expedition |
|
Conference |
|
Notes |
|
Approved |
no |
Call Number |
GFZ @ kyba @ |
Serial |
1908 |
Permanent link to this record |
|
|
|
Author |
Jechow, A.; Kolláth, Z.; Lerner, A.; Hänel, A.; Shashar, N.; Hölker, F.; Kyba, C.C.M. |
Title |
Measuring Light Pollution with Fisheye Lens Imagery from A Moving Boat–A Proof of Concept |
Type |
Journal Article |
Year |
2017 |
Publication |
International Journal of Sustainable Lighting |
Abbreviated Journal |
|
Volume |
19 |
Issue |
1 |
Pages |
15-25 |
Keywords  |
Skyglow; Instrumentation |
Abstract |
Near all-sky imaging photometry was performed from a boat on the Gulf of Aqaba to measure the night sky brightness in a coastal environment. The boat was not anchored, and therefore drifted and rocked. The camera was mounted on a tripod without any inertia/motion stabilization. A commercial digital single lens reflex (DSLR) camera and fisheye lens were used with ISO setting of 6400, with the exposure time varied between 0.5 s and 5 s. We find that despite movement of the vessel the measurements produce quantitatively comparable results apart from saturation effects. We discuss the potential and limitations of this method for mapping light pollution in marine and freshwater systems. This work represents the proof of concept that all-sky photometry with a commercial DSLR camera is a viable tool to determine light pollution in an ecological context from a moving boat. |
Address |
|
Corporate Author |
|
Thesis |
|
Publisher |
|
Place of Publication |
|
Editor |
|
Language |
|
Summary Language |
|
Original Title |
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
Series Volume |
|
Series Issue |
|
Edition |
|
ISSN |
|
ISBN |
|
Medium |
|
Area |
|
Expedition |
|
Conference |
|
Notes |
|
Approved |
no |
Call Number |
GFZ @ kyba @ |
Serial |
2151 |
Permanent link to this record |