|   | 
Details
   web
Records
Author Cavazzani, S.; Ortolani, S.; Bertolo, A.; Binotto, R.; Fiorentin, P.; Carraro, G.; Saviane, I.; Zitelli, V.
Title Sky Quality Meter and satellite correlation for night cloud-cover analysis at astronomical sites Type Journal Article
Year 2020 Publication Monthly Notices of the Royal Astronomical Society Abbreviated Journal
Volume 493 Issue 2 Pages 2463-2471
Keywords (down) Skyglow
Abstract The analysis of night cloud cover is very important for astronomical observations in real time, considering a typical observation time of about 15 minutes, and to provide statistics. In this article, we use the Sky Quality Meter (SQM) for high-resolution temporal analysis of the La Silla and Asiago (Ekar Observatory) sky: 3 and 5 minutes respectively. We investigate the annual temporal evolution of the natural contributions of the sky at a site not influenced by artificial light at night (ALAN) and at one highly influenced. We also make a correlation between GOES and Aqua satellite data and ground-based SQM data to confirm the relationship between the SQM data and cloud cover. We develop an algorithm that allows the use of the SQM for night cloud detection and reach correlations with the nighttime cloud cover detected by the GOES and Aqua satellites of 97.2 per cent at La Silla and 94.6 per cent at Asiago. Our algorithm also classifies photometric (PN) and spectroscopic nights (SN). We measure 59.1 per cent PN and 21.7 per cent SN for a total percentage of clear nights of 80.8 per cent at La Silla in 2018. The respective Ekar Observatory values are 31.1 per cent PN, 24.0 per cent SN and 55.1 per cent of total clear night time. Application to the SQM network would involve the development of long-term statistics and large data forecasting models for site testing and real-time astronomical observation.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0035-8711 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number GFZ @ kyba @ Serial 2842
Permanent link to this record
 

 
Author Ściężor, T.
Title The impact of clouds on the brightness of the night sky Type Journal Article
Year 2020 Publication Journal of Quantitative Spectroscopy and Radiative Transfer Abbreviated Journal Journal of Quantitative Spectroscopy and Radiative Transfer
Volume in press Issue Pages 106962
Keywords (down) Skyglow
Abstract Clouds are a kind of atmospheric factor that most effectively scatters the artificial light coming from the ground. Therefore, they have the most significant impact on the brightness of the night sky. The paper analyses the influence of both the level of cloudiness, as well as the genera of clouds and altitude of its base, on amplifying of the light pollution. The impact of cloudiness on the brightness of the night sky in places with different levels of light pollution was researched. Measurements of meteorological elements were used together with clouds genera assessments. The introduction of an innovative method of identifying some genera of clouds on the base of the all-night continuous measurements of the sky's brightness allowed for a similar analysis in the absence of observational data specifying the genera of clouds.

A linear correlation between the cloudiness and the brightness of the night sky was found. The determined linear correlation parameters allow for specifying the three types of light-polluted areas, possibly related to the density of population. It was found that among the nine genera of the identified night clouds, the Altocumulus, Cirrocumulus, and Cumulonimbus ones are responsible for this correlation. No dependence of the brightness of the night sky on the clouds’ albedo was found. In case of overcast sky, there was a clear relationship between the average altitude of the individual genus of clouds and the brightness of the night sky. Most of the night sky brightness comes from the light scattered on the lowest altitude clouds genera, while the least contribution comes from the light scattered on the high-level clouds. It was also found that at the freezing temperatures, the layer of aerosols forms below the level of the genera Nimbostratus or Stratus. This layer, thickening with the decreasing temperature, additionally scatters the artificial light.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0022-4073 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number GFZ @ kyba @ Serial 2859
Permanent link to this record
 

 
Author Priyatikanto, R.; Mayangsari, L.; Prihandoko, R.A.; Admiranto, A.G.
Title Classification of Continuous Sky Brightness Data Using Random Forest Type Journal Article
Year 2020 Publication Advances in Astronomy Abbreviated Journal Advances in Astronomy
Volume 2020 Issue Pages 1-11
Keywords (down) Skyglow
Abstract Sky brightness measuring and monitoring are required to mitigate the negative effect of light pollution as a byproduct of modern civilization. Good handling of a pile of sky brightness data includes evaluation and classification of the data according to its quality and characteristics such that further analysis and inference can be conducted properly. This study aims to develop a classification model based on Random Forest algorithm and to evaluate its performance. Using sky brightness data from 1250 nights with minute temporal resolution acquired at eight different stations in Indonesia, datasets consisting of 15 features were created to train and test the model. Those features were extracted from the observation time, the global statistics of nightly sky brightness, or the light curve characteristics. Among those features, 10 are considered to be the most important for the classification task. The model was trained to classify the data into six classes (1: peculiar data, 2: overcast, 3: cloudy, 4: clear, 5: moonlit-cloudy, and 6: moonlit-clear) and then tested to achieve high accuracy (92%) and scores (F-score = 84% and G-mean = 84%). Some misclassifications exist, but the classification results are considerably good as indicated by posterior distributions of the sky brightness as a function of classes. Data classified as class-4 have sharp distribution with typical full width at half maximum of 1.5 mag/arcsec2, while distributions of class-2 and -3 are left skewed with the latter having lighter tail. Due to the moonlight, distributions of class-5 and -6 data are more smeared or have larger spread. These results demonstrate that the established classification model is reasonably good and consistent.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1687-7969 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number GFZ @ kyba @ Serial 2878
Permanent link to this record
 

 
Author Jechow, A.; Kyba, C.C.M.; Hölker, F.
Title Mapping the brightness and color of urban to rural skyglow with all-sky photometry Type Journal Article
Year 2020 Publication Journal of Quantitative Spectroscopy and Radiative Transfer Abbreviated Journal Journal of Quantitative Spectroscopy and Radiative Transfer
Volume in press Issue Pages in press
Keywords (down) Skyglow
Abstract Artificial skyglow is a form of light pollution with wide ranging implications on the environment. The extent, intensity and color of skyglow depends on the artificial light sources and weather conditions. Skyglow can be best determined with ground based instruments. We mapped the skyglow of Berlin, Germany, for clear sky and overcast sky conditions inside and outside of the city limits. We conducted observations using a transect from the city center of Berlin towards a rural place more than 58 km south of Berlin using all-sky photometry with a calibrated commercial digital camera and a fisheye lens. From the multispectral imaging data, we processed luminance and correlated color temperature maps. We extracted the night sky brightness and correlated color temperature at zenith, as well as horizontal and scalar illuminance simultaneously. We calculated cloud amplification factors at each site and investigated the changes of brightness and color with distance, particularly showing differences inside and outside of the city limits. We found high values for illuminance above full moon light levels and amplification factors as high as 25 in the city center and a gradient towards the city limit and outside of the city limit. We further observed that clouds decrease the correlated color temperature in almost all cases. We discuss advantages and weaknesses of our method, compare the results with modeled night sky brightness data and provide recommendations for future work.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0022-4073 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number GFZ @ kyba @ Serial 2895
Permanent link to this record
 

 
Author Wallner, S.; Kocifaj, M.; Komar, L.; Solano-Lamphar, H.A.
Title Night-sky imaging as a potential tool for characterization of total lumen output from small and medium-sized cities Type Journal Article
Year 2020 Publication Monthly Notices of the Royal Astronomical Society Abbreviated Journal
Volume 494 Issue 4 Pages 5008-5017
Keywords (down) Skyglow
Abstract In this article, the asymptotic formula developed in past work and applied to predict skyglow due to distant sources was evolved, with the objective of characterizing small and medium-sized cities in the observer's surroundings. To enable this, a combination of theoretical computations and in situ measurements is needed, aiming to distinguish between dominant and smaller light-emitting sources, with the latter usually being camouflaged when measuring the night sky. Furthermore, for numerical modelling of skyglow, few of the most important parameters, specifically the amount of total lumens installed and radiated to the upward hemisphere, can be derived. Astronomical observatories, in particular, can profit from this concept, since they are usually situated far away from large cities but can still be surrounded by smaller villages and towns. We present a detailed description of how theoretical computations are combined with all-sky photometry in order to obtain the properties mentioned. Results are compared with satellite data, showing that, regarding approximations undertaken for processing, they are comparable, underlining the functionality of our approach. The idea of including in situ observations enables us to quantify the impact of small and medium-sized cities globally and independent of location, as long as measurements were conducted outside light domes. In addition, the presented work may be of major interest to the light-pollution community if conducting long-term observations of cities, since the quality of commonly used satellite data is going to decrease in the future, due to blindness in short wavelengths and upcoming conversions of public lighting systems to blue-enlightened LEDs.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0035-8711 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number GFZ @ kyba @ Serial 2911
Permanent link to this record