|   | 
Details
   web
Records
Author Andreatta, G.; Tessmar-Raible, K.
Title The still dark side of the moon: molecular mechanisms of lunar-controlled rhythms and clocks Type Journal Article
Year 2020 Publication Journal of Molecular Biology Abbreviated Journal J Mol Biol
Volume in press Issue Pages
Keywords (down) Review; Animals; Hormones; Lunar rhythms; Physiology; Proteome; Transcriptome
Abstract Starting with the beginning of the last century, a multitude of scientific studies has documented that the lunar cycle times behaviors and physiology in many organisms. It is plausible that even the first life forms adapted to the different rhythms controlled by the moon. Consistently, many marine species exhibit lunar rhythms, and also the number of documented “lunar-rhythmic” terrestrial species is increasing. Organisms follow diverse lunar geophysical/astronomical rhythms, which differ significantly in terms of period length: from hours (circalunidian and circatidal rhythms) to days (circasemilunar and circalunar cycles). Evidence for internal circatital and circalunar oscillators exists for a range of species based on past behavioral studies, but those species with well-documented behaviorally free-running lunar rhythms are not typically used for molecular studies. Thus, the underlying molecular mechanisms are largely obscure: the dark side of the moon. Here we review findings which start to connect molecular pathways with moon-controlled physiology and behaviors. The present data indicate connections between metabolic/endocrine pathways and moon-controlled rhythms, as well as interactions between circadian and circatidal/circalunar rhythms. Moreover, recent high-throughput analyses provide useful leads towards pathways, as well as molecular markers. However, for each interpretation it is important to carefully consider the – partly substantially differing – conditions used in each experimental paradigm. In the future, it will be important to use lab experiments to delineate the specific mechanisms of the different solar- and lunar-controlled rhythms, but to also start integrating them together, as life has evolved equally long under rhythms of both sun and moon.
Address Max Perutz Labs, University of Vienna, Vienna BioCenter, Dr. Bohr-Gasse 9/4, A-1030 Vienna; Research Platform “Rhythms of Life”, University of Vienna, Vienna BioCenter, Dr. Bohr-Gasse 9/4, A-1030 Vienna. Electronic address: kristin.tessmar@mfpl.ac.at
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0022-2836 ISBN Medium
Area Expedition Conference
Notes PMID:32198116 Approved no
Call Number GFZ @ kyba @ Serial 2865
Permanent link to this record
 

 
Author Rumanova, V.S.; Okuliarova, M.; Zeman, M.
Title Differential Effects of Constant Light and Dim Light at Night on the Circadian Control of Metabolism and Behavior Type Journal Article
Year 2020 Publication International Journal of Molecular Sciences Abbreviated Journal Int J Mol Sci
Volume 21 Issue 15 Pages
Keywords (down) Review; Animals; behavior; chronodisruption; circadian; corticosterone; dim light at night; hormones; locomotor activity; melatonin; metabolism; rhythms
Abstract The disruption of circadian rhythms by environmental conditions can induce alterations in body homeostasis, from behavior to metabolism. The light:dark cycle is the most reliable environmental agent, which entrains circadian rhythms, although its credibility has decreased because of the extensive use of artificial light at night. Light pollution can compromise performance and health, but underlying mechanisms are not fully understood. The present review assesses the consequences induced by constant light (LL) in comparison with dim light at night (dLAN) on the circadian control of metabolism and behavior in rodents, since such an approach can identify the key mechanisms of chronodisruption. Data suggest that the effects of LL are more pronounced compared to dLAN and are directly related to the light level and duration of exposure. Dim LAN reduces nocturnal melatonin levels, similarly to LL, but the consequences on the rhythms of corticosterone and behavioral traits are not uniform and an improved quantification of the disrupted rhythms is needed. Metabolism is under strong circadian control and its disruption can lead to various pathologies. Moreover, metabolism is not only an output, but some metabolites and peripheral signal molecules can feedback on the circadian clockwork and either stabilize or amplify its desynchronization.
Address Department of Animal Physiology and Ethology, Faculty of Natural Sciences, Comenius University in Bratislava, Ilkovicova 6, 842 15 Bratislava, Slovakia
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1422-0067 ISBN Medium
Area Expedition Conference
Notes PMID:32751870 Approved no
Call Number GFZ @ kyba @ Serial 3062
Permanent link to this record
 

 
Author Hanifin, J.P.; Dauchy, R.T.; Blask, D.E.; Hill, S.M.; Brainard, G.C.
Title Relevance of Electrical Light on Circadian, Neuroendocrine, and Neurobehavioral Regulation in Laboratory Animal Facilities Type Journal Article
Year 2020 Publication ILAR Journal Abbreviated Journal
Volume in press Issue Pages
Keywords (down) Review; Animals
Abstract Light is a key extrinsic factor to be considered in operations and design of animal room facilities. Over the past four decades, many studies on typical laboratory animal populations have demonstrated impacts on neuroendocrine, neurobehavioral, and circadian physiology. These effects are regulated independently from the defined physiology for the visual system. The range of physiological responses that oscillate with the 24 hour rhythm of the day include sleep and wakefulness, body temperature, hormonal secretion, and a wide range of other physiological parameters. Melatonin has been the chief neuroendocrine hormone studied, but acute light-induced effects on corticosterone as well as other hormones have also been observed. Within the last two decades, a new photosensory system in the mammalian eye has been discovered. A small set of retinal ganglion cells, previously thought to function as a visual output neuron, have been shown to be directly photosensitive and act differently from the classic photoreceptors of the visual system. Understanding the effects of light on mammalian physiology and behavior must take into account how the classical visual photoreceptors and the newly discovered ipRGC photoreceptor systems interact. Scientists and facility managers need to appreciate lighting impacts on circadian, neuroendocrine, and neurobehavioral regulation in order to improve lighting of laboratory facilities to foster optimum health and well-being of animals.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1084-2020 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number GFZ @ kyba @ Serial 3024
Permanent link to this record
 

 
Author Tossa, P.; Souques, M.
Title Effects of artificial light at night and light pollution on human circadian rhythms Type Journal Article
Year 2019 Publication Environnement Risques Santé Abbreviated Journal
Volume 18 Issue 6 Pages 477-487
Keywords (down) Reveiw; Human Health
Abstract Artificial light is a tangible manifestation of economic and social development, as well as a response to certain needs, especially comfort and civil and road safety. However, this use has been so associated with technological progress that its invasion of daily life has been almost imperceptible. With the recent increase in night lighting (11 million light points in 2016 according to the French Agency for the Environment and Energy Management) and the production of new lamp technologies (in particular light-emitting diodes or LEDs), societal concerns have emerged and are growing. These concerns include light pollution and the impact of blue light on human health and the environment. The scientific community has also taken up the subject, publishing in recent years a large and ever-increasing number of articles on the effects of artificial light at night on fauna and flora as well as on human health. In this review, we propose a synthesis of knowledge on human health effects of light based on scientific reports and an update of recent scientific production.

This review updates knowledge of the chronobiological effects of light at night, particularly blue light. We also briefly describe the potential beneficial effects of light on well-being.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1635-0421 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number GFZ @ kyba @ Serial 2806
Permanent link to this record
 

 
Author Elvidge, C.D.; Ghosh, T.; Hsu, F.-C.; Zhizhin, M.; Bazilian, M.
Title The Dimming of Lights in China during the COVID-19 Pandemic Type Journal Article
Year 2020 Publication Remote Sensing Abbreviated Journal Remote Sensing
Volume 12 Issue 17 Pages 2851
Keywords (down) Remote Sensing; VIIRS; Day-night band (DNB); Nighttime lights; COVID-19; Pandemic; VIIRS-DNB
Abstract A satellite survey of the cumulative radiant emissions from electric lighting across China reveals a large radiance decline in lighting from December 2019 to February 2020—the peak of the lockdown established to suppress the spread of COVID-19 infections. To illustrate the changes, an analysis was also conducted on a reference set from a year prior to the pandemic. In the reference period, the majority (62%) of China’s population lived in administrative units that became brighter in March 2019 relative to December 2018. The situation reversed in February 2020, when 82% of the population lived in administrative units where lighting dimmed as a result of the pandemic. The dimming has also been demonstrated with difference images for the reference and pandemic image pairs, scattergrams, and a nightly temporal profile. The results indicate that it should be feasible to monitor declines and recovery in economic activity levels using nighttime lighting as a proxy.
Address Earth Observation Group, Payne Institute for Public Policy, Colorado School of Mines, Golden, CO 80401, USA; celvidge(at)mines.edu
Corporate Author Thesis
Publisher MDPI Place of Publication Editor
Language English Summary Language English Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2072-4292 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number IDA @ john @ Serial 3134
Permanent link to this record