|   | 
Details
   web
Records
Author Bará, S.; Espey, B.; Falchi, F.; Kyba, C.C.M.; Nievas, M., Pescatori, P., Ribas, S.J., Sánchez de Miguel, A.; Staubmann, P., Tapia Ayuga, C.; Wuchterl, G., Zamorano, J.
Title Report of the 2014 LoNNe Intercomparison Campaign Type Report
Year 2015 Publication Abbreviated Journal
Volume Issue 32989 Pages
Keywords (down) skyglow
Abstract The 2014 LoNNe (Loss of the Night Network) intercomparison campaign is the second of four campaigns planned during EU COST Action ES1204. The goal of these campaigns is to understand systematic uncertainty inherent in observations of skyglow (light pollution). An innovation of this year’s campaign was to take measurements with many of the nstruments at two sites: an urban location and a location far from artificial lights. This report summarizes the meeting, and also provides three recommendations for obtaining and analyzing handheld SQM observations.
Address
Corporate Author Thesis
Publisher Universidad Complutense Place of Publication Madrid Editor
Language English Summary Language English Original Title
Series Editor Series Title e-prints Complutense Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number LoNNe @ kyba @ Serial 1254
Permanent link to this record
 

 
Author Jechow, A.; Hölker, F.; Kolláth, Z.; Gessner, M.O.; Kyba, C.C.M.
Title Evaluating the summer night sky brightness at a research field site on Lake Stechlin in northeastern Germany Type Journal Article
Year 2016 Publication Journal of Quantitative Spectroscopy and Radiative Transfer Abbreviated Journal Journal of Quantitative Spectroscopy and Radiative Transfer
Volume 181 Issue Pages 24-32
Keywords (down) Skyglow
Abstract We report on luminance measurements of the summer night sky at a field site on a freshwater lake in northeastern Germany (Lake Stechlin) to evaluate the amount of artificial skyglow from nearby and distant towns in the context of a planned study on light pollution. The site is located about 70 km north of Berlin in a rural area possibly belonging to one of the darkest regions in Germany. Continuous monitoring of the zenith sky luminance between June and September 2015 was conducted utilizing a Sky Quality Meter. With this device, typical values for clear nights in the range of 21.5–21.7 magSQM/arcsec2 were measured, which is on the order of the natural sky brightness during starry nights. On overcast nights, values down to 22.84 magSQM/arcsec2 were obtained, which is about one third as bright as on clear nights. The luminance measured on clear nights as well as the darkening with the presence of clouds indicate that there is very little influence of artificial skyglow on the zenith sky brightness at this location. Furthermore, fish-eye lens sky imaging luminance photometry was performed with a digital single-lens reflex camera on a clear night in the absence of moonlight. The photographs unravel several distant towns as possible sources of light pollution on the horizon. However, the low level of artificial skyglow makes the field site at Lake Stechlin an excellent location to study the effects of skyglow on a lake ecosystem in a controlled fashion.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0022-4073 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number LoNNe @ kyba @; GFZ @ kyba @ Serial 1354
Permanent link to this record
 

 
Author Bará, S.
Title Anthropogenic disruption of the night sky darkness in urban and rural areas Type Journal Article
Year 2016 Publication Royal Society Open Science Abbreviated Journal R. Soc. open sci.
Volume 3 Issue 10 Pages 160541
Keywords (down) Skyglow
Abstract The growing emissions of artificial light to the atmosphere are producing, among other effects, a significant increase of the night sky brightness (NSB) above its expected natural values. A permanent sensor network has been deployed in Galicia (northwest of Iberian peninsula) to monitor the anthropogenic disruption of the night sky darkness in a countrywide area. The network is composed of 14 detectors integrated in automated weather stations of MeteoGalicia, the Galician public meteorological agency. Zenithal NSB readings are taken every minute and the results are openly available in real time for researchers, interested stakeholders and the public at large through a dedicated website. The measurements allow one to assess the extent of the loss of the natural night in urban, periurban, transition and dark rural sites, as well as its daily and monthly time courses. Two metrics are introduced here to characterize the disruption of the night darkness across the year: the significant magnitude (m1/3) and the moonlight modulation factor (γ). The significant magnitude shows that in clear and moonless nights the zenithal night sky in the analysed urban settings is typically 14–23 times brighter than expected from a nominal natural dark sky. This factor lies in the range 7–8 in periurban sites, 1.6–2.5 in transition regions and 0.8–1.6 in rural and mountain dark sky places. The presence of clouds in urban areas strongly enhances the amount of scattered light, easily reaching amplification factors in excess of 25, in comparison with the light scattered in the same places under clear sky conditions. The periodic NSB modulation due to the Moon, still clearly visible in transition and rural places, is barely notable at periurban locations and is practically lost at urban sites.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2054-5703 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number LoNNe @ kyba @ Serial 1544
Permanent link to this record
 

 
Author Hänel, A.; Posch, T.; Ribas, S.J.; Aubé, M.; Duriscoe, D.; Jechow, A.; Kollath, Z.; Lolkema, D.E.; Moore, C.; Schmidt, N.; Spoelstra, H.; Wuchterl, G.; Kyba, C.C.M.
Title Measuring night sky brightness: methods and challenges Type Journal Article
Year 2018 Publication Journal of Quantitative Spectroscopy and Radiative Transfer Abbreviated Journal Journal of Quantitative Spectroscopy and Radiative Transfer
Volume 205 Issue Pages 278-290
Keywords (down) skyglow
Abstract Measuring the brightness of the night sky has become an increasingly important topic in recent years, as artificial lights and their scattering by the Earthâ??s atmosphere continue spreading around the globe. Several instruments and techniques have been developed for this task. We give an overview of these, and discuss their strengths and limitations. The different quantities that can and should be derived when measuring the night sky brightness are discussed, as well as the procedures that have been and still need to be defined in this context. We conclude that in many situations, calibrated consumer digital cameras with fisheye lenses provide the best relation between ease-of-use and wealth of obtainable information on the night sky. While they do not obtain full spectral information, they are able to sample the complete sky in a period of minutes, with colour information in three bands. This is important, as given the current global changes in lamp spectra, changes in sky radiance observed only with single band devices may lead to incorrect conclusions regarding long term changes in sky brightness. The acquisition of all-sky information is desirable, as zenith-only information does not provide an adequate characterization of a site. Nevertheless, zenith-only single-band one-channel devices such as the â??Sky Quality Meterâ? continue to be a viable option for long-term studies of night sky brightness and for studies conducted from a moving platform. Accurate interpretation of such data requires some understanding of the colour composition of the sky light. We recommend supplementing long-term time series derived with such devices with periodic all-sky sampling by a calibrated camera system and calibrated luxmeters or luminance meters.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0022-4073 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number LoNNe @ kyba @ Serial 1731
Permanent link to this record
 

 
Author Jechow, A.; Kolláth, Z.; Ribas, S.J.; Spoelstra, H.; Hölker, F.; Kyba, C.C.M.
Title Imaging and mapping the impact of clouds on skyglow with all-sky photometry Type Journal Article
Year 2017 Publication Scientific Reports Abbreviated Journal Sci Rep
Volume 7 Issue 1 Pages Article number 6741
Keywords (down) Skyglow
Abstract Artificial skyglow is constantly growing on a global scale, with potential ecological consequences ranging up to affecting biodiversity. To understand these consequences, worldwide mapping of skyglow for all weather conditions is urgently required. In particular, the amplification of skyglow by clouds needs to be studied, as clouds can extend the reach of skyglow into remote areas not affected by light pollution on clear nights. Here we use commercial digital single lens reflex cameras with fisheye lenses for all-sky photometry. We track the reach of skyglow from a peri-urban into a remote area on a clear and a partly cloudy night by performing transects from the Spanish town of Balaguer towards Montsec Astronomical Park. From one single all-sky image, we extract zenith luminance, horizontal and scalar illuminance. While zenith luminance reaches near-natural levels at 5 km distance from the town on the clear night, similar levels are only reached at 27 km on the partly cloudy night. Our results show the dramatic increase of the reach of skyglow even for moderate cloud coverage at this site. The powerful and easy-to-use method promises to be widely applicable for studies of ecological light pollution on a global scale also by non-specialists in photometry.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2045-2322 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number LoNNe @ kyba @ Serial 1691
Permanent link to this record