toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Bará, S.; Rodríguez-Arós, Á.; Pérez, M.; Tosar, B.; Lima, R.; Sánchez de Miguel, A.; Zamorano, J. url  doi
openurl 
  Title Estimating the relative contribution of streetlights, vehicles, and residential lighting to the urban night sky brightness Type Journal Article
  Year 2018 Publication Lighting Research & Technology Abbreviated Journal Lighting Res & Tech  
  Volume Issue October 2018 Pages  
  Keywords (down) Remote Sensing; traffic; Roadway lighting  
  Abstract Under stable atmospheric conditions the brightness of the urban sky varies throughout the night following the time course of the anthropogenic emissions of light. Different types of artificial light sources (e.g. streetlights, residential, and vehicle lights) have specific time signatures, and this feature makes it possible to estimate the amount of brightness contributed by each of them. Our approach is based on transforming the time representation of the zenithal night sky brightness into a modal expansion in terms of the time signatures of the different sources of light. The modal coefficients, and hence the absolute and relative contributions of each type of source, can be estimated by means of a linear least squares fit. A practical method for determining the time signatures of different contributing sources is also described, based on wide-field time-lapse photometry of the urban nightscape. Our preliminary results suggest that, besides the dominant streetlight contribution, artificial light leaking out of the windows of residential buildings may account for a significant share of the time-varying part of the zenithal night sky brightness at the measurement locations, whilst the contribution of the vehicle lights seems to be significantly smaller.  
  Address Área de Óptica, Dept. Física Aplicada, Facultade de Óptica e Optometría, Universidade de Santiago de Compostela, Santiago de Compostela 15782, Galicia, Spain. salva.bara(at)usc.es  
  Corporate Author Thesis  
  Publisher SAGE Place of Publication Editor  
  Language English Summary Language English Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1477-1535 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number GFZ @ kyba @ Serial 2052  
Permanent link to this record
 

 
Author Checa, J.; Nel·lo, O. url  doi
openurl 
  Title Urban Intensities. The Urbanization of the Iberian Mediterranean Coast in the Light of Nighttime Satellite Images of the Earth Type Journal Article
  Year 2018 Publication Urban Science Abbreviated Journal Urban Science  
  Volume 2 Issue 4 Pages 115  
  Keywords (down) Remote Sensing; Tourism  
  Abstract The contribution shares the approach of critical urban studies that have conceptualized urbanization more as a process than as a sum of spatial forms. Thus, the contribution studies the urbanization process not only from the point of view of the physical occupation of land but also considers changes in the intensity of the uses of space. To fulfill this aim, the new sources of nocturnal satellite images are particularly useful. These allow us to observe the intensity of urban uses both in terms of their distribution over space and their recurrence over time. The research focuses on the Iberian Mediterranean coast and permits the verification of the intensity of the urban uses of the space for the whole of this area and their seasonal variations throughout the year. The source of the study are the nighttime satellite images of the Earth for the 2012–2017 period from the NASA SNPP satellite equipped with the VIIRS-DNB instrument. By establishing a threshold of urban light the research shows that those districts with the greatest extensions of urban light do not necessarily correspond with the most densely populated areas. Similarly the absence of urban light does not necessarily indicate the absence of urban uses. Finally, the variations of intensity of light prove to be a good indicator of seasonal variations of activity in tourist areas.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2413-8851 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number GFZ @ kyba @ Serial 2120  
Permanent link to this record
 

 
Author Tong, K.P.; Kyba, C.C.M.; Heygster, G.; Kuechly, H.U.; Notholt, J.; Kollth, Z. url  doi
openurl 
  Title Angular distribution of upwelling artificial light in Europe as observed by Suomi–NPP satellite Type Journal Article
  Year 2020 Publication Journal of Quantitative Spectroscopy and Radiative Transfer Abbreviated Journal Journal of Quantitative Spectroscopy and Radiative Transfer  
  Volume in press Issue Pages in press  
  Keywords (down) Remote Sensing; Skyglow  
  Abstract Measuring the angular distribution of upwelling artificial light is important for modeling light pollution, because the direction of emission affects how light propagates in the atmosphere. We characterize the angular distributions of upwelling artificial light for Europe and northern Africa in 2018, based on night time radiance data for clear nights without twilight and moonlight from the VIIRS–DNB sensor on board the Suomi NPP satellite. We find that in general, suburban areas of major cities emit more light at larger zenith angles, whereas the opposite can be seen at the city centers, where the highest radiance is directed upward. The mean numbers of overflights for the year is 83, meaning that there are on average approximately seven suitable overflights per month. Future analysis may consider using moonlight models to compensate for the retrieval of moonlit scenes and analyzing data from different years in order to expand the amount of available data. As the VIIRS–DNB sensor on board the NOAA–20 satellite (launched 2017) has almost the same design, this method can also be extended to the data taken by NOAA–20.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0022-4073 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number GFZ @ kyba @ Serial 2880  
Permanent link to this record
 

 
Author Li, X.; Zhou, Y. url  doi
openurl 
  Title Urban mapping using DMSP/OLS stable night-time light: a review Type Journal Article
  Year 2017 Publication International Journal of Remote Sensing Abbreviated Journal International Journal of Remote Sensing  
  Volume 38 Issue 21 Pages 6030-6046  
  Keywords (down) Remote Sensing; Review  
  Abstract The Defense Meteorological Satellite Program/Operational Linescane System (DMSP/OLS) stable night-time light (NTL) data showed great potential in urban extent mapping across a variety of scales with historical records dating back to 1990s. In order to advance this data, a systematic methodology review on NTL-based urban extent mapping was carried out, with emphases on four aspects including the saturation of luminosity, the blooming effect, the intercalibration of time series, and their temporal pattern adjustment. We think ancillary features (e.g. land surface conditions and socioeconomic activities) can help reveal more spatial details in urban core regions with high digital number (DN) values. In addition, dynamic optimal thresholds are needed to address issues of different exaggeration of NTL data in the large scale urban mapping. Then, we reviewed three key aspects (reference region, reference satellite/year, and calibration model) in the current intercalibration framework of NTL time series, and summarized major reference regions in literature that were used for intercalibration, which is critical to achieve a globally consistent series of NTL DN values over years. Moreover, adjustment of temporal pattern on intercalibrated NTL series is needed to trace the urban sprawl process, particularly in rapidly developing regions. In addition, we analysed those applications for urban extent mapping based on the new generation NTL data of Visible/Infrared Imager/Radiometer Suite. Finally, we prospected the challenges and opportunities including the improvement of temporally inconsistent NTL series, mitigation of spatial heterogeneity of blooming effect in NTL, and synthesis of different NTL satellites, in global urban extent mapping.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0143-1161 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number GFZ @ kyba @ Serial 2222  
Permanent link to this record
 

 
Author Leibrand, A.; Sadoff, N.; Maslak, T.; Thomas, A. url  doi
openurl 
  Title Using Earth Observations to Help Developing Countries Improve Access to Reliable, Sustainable, and Modern Energy Type Journal Article
  Year 2019 Publication Frontiers in Environmental Science Abbreviated Journal Front. Environ. Sci.  
  Volume 7 Issue Pages  
  Keywords (down) Remote Sensing; Review  
  Abstract In this review paper, the authors identify priority areas, and opportunities for electric utilities in developing and emerging economies to incorporate Earth observation (EO) data into rural electrification planning, renewable energy resource assessment, distributed generation, grid operation and reliability, and disaster risk reduction and recovery efforts. Using a methodological framework, the authors conducted a comprehensive literature review of primary and gray literature. This paper reviews the many existing applications for EO data, such as the use of nighttime lights imagery for estimations of rural electrification, EO-derived normalized difference vegetation index (NDVI) products for vegetation monitoring for overhead transmission line management, solar radiance data for renewable energy project planning, and nowcasting for extreme weather events and other disaster monitoring. These and other applications can enhance energy security through improved governance of and access to modern and reliable electricity, renewable energy management, and disaster risk assessment in developing nations, paving the way for more sustainable social and economic development. Real-world examples of EO data use by utilities in developing and emerging economies, as well as barriers and opportunities for EO technology transfer, are discussed. Recommendations for stakeholder engagement, future EO training opportunities, and human capacity building are also presented.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2296-665X ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number GFZ @ kyba @ Serial 2660  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: