|   | 
Details
   web
Records
Author Riedel, C.S.; Georg, B.; Fahrenkrug, J.; Hannibal, J.
Title Altered light induced EGR1 expression in the SCN of PACAP deficient mice Type Journal Article
Year 2020 Publication PloS one Abbreviated Journal PLoS One
Volume 15 Issue 5 Pages e0232748
Keywords (up) Animals
Abstract The brain's biological clock is located in the suprachiasmatic nucleus (SCN) of the hypothalamus and generates circadian rhythms in physiology and behavior. The circadian clock needs daily adjustment by light to stay synchronized (entrained) with the astronomical 24 h light/dark cycle. Light entrainment occurs via melanopsin expressing retinal ganglion cells (mRGCs) and two neurotransmitters of the retinohypothalamic tract (RHT), PACAP and glutamate, which transmit light information to the SCN neurons. In SCN neurons, light signaling involves the immediate-early genes Fos, Egr1 and the clock genes Per1 and Per2. In this study, we used PACAP deficient mice to evaluate PACAP's role in light induced gene expression of EGR1 in SCN neurons during early (ZT17) and late (ZT23) subjective night at high (300 lux) and low (10 lux) white light exposure. We found significantly lower levels of both EGR1 mRNA and protein in the SCN in PACAP deficient mice compared to wild type mice at early subjective night (ZT17) exposed to low but not high light intensity. No difference was found between the two genotypes at late night (ZT23) at neither light intensities. In conclusion, light mediated EGR1 induction in SCN neurons at early night at low light intensities is dependent of PACAP signaling. A role of PACAP in shaping synaptic plasticity during light stimulation at night is discussed.
Address Department of Clinical Biochemistry, Faculty of Health Sciences, Bispebjerg Hospital, University of Copenhagen, Copenhagen NV, Denmark
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1932-6203 ISBN Medium
Area Expedition Conference
Notes PMID:32379800; PMCID:PMC7205239 Approved no
Call Number GFZ @ kyba @ Serial 2915
Permanent link to this record
 

 
Author Lieske, D.J.; Tranquilla, L.M.F.; Ronconi, R.A.; Abbott, S.
Title “Seas of risk”: Assessing the threats to colonial-nesting seabirds in Eastern Canada Type Journal Article
Year 2020 Publication Marine Policy Abbreviated Journal Marine Policy
Volume 115 Issue Pages 103863
Keywords (up) Animals
Abstract This study presents the results of the first broad-scale, spatial cumulative impact analysis (SCIA) conducted for colonial-nesting seabirds at-sea in eastern Canada. Species distribution models, based on at-sea tracking data for thirteen species/groups of seabirds (n = 520 individuals), were applied to over 5000 species-specific colonies to map relative abundance patterns across the entire region. This information was combined with distributional data for a number of key anthropogenic threats to quantify exposure to fisheries, light and ship-source oil pollution, and marine traffic. As a final step, information about species-specific sensitivity to each threat was integrated to compute region-wide cumulative risk.

The data products permit the visualization of the interaction between species and threats, and confirm that large portions of the coastal zones of Nova Scotia and Newfoundland, as well as the Grand Banks shelf break, constitute areas where breeding seabirds experience the highest potential impact. The cumulative risk maps revealed that species which were either widespread throughout coastal areas (e.g., gulls), or capable of foraging long distance (Leach's Storm-Petrel), were most at risk. Cumulative risk maps help identify appropriate and potentially effective management and conservation actions, and are of value to federal regulators responsible for managing cumulative effects as part of the new Canadian Impact Assessment Act. They also can assist marine planners achieve the Aichi marine conservation targets as specified by the Convention on Biodiversity. By filling a knowledge gap for a large potion of the northwest Atlantic, these results help to counter the “shifting baselines syndrome”.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0308597X ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number GFZ @ kyba @ Serial 2941
Permanent link to this record
 

 
Author Baekelandt, S.; Milla, S.; Cornet, V.; Flamion, E.; Ledore, Y.; Redivo, B.; Antipine, S.; Mandiki, S.N.M.; Houndji, A.; El Kertaoui, N.; Kestemont, P.
Title Seasonal simulated photoperiods influence melatonin release and immune markers of pike perch Sander lucioperca Type Journal Article
Year 2020 Publication Scientific Reports Abbreviated Journal Sci Rep
Volume 10 Issue 1 Pages 2650
Keywords (up) Animals
Abstract Melatonin is considered as the time-keeping hormone acting on important physiological functions of teleosts. While the influence of melatonin on reproduction and development is well described, its potential role on immune functions has little been considered. In order to better define an immune modulation by the melatonin hormone, we hypothesized that natural variations of photoperiod and subsequent changes in melatonin release profile may act on immune status of pikeperch. Therefore, we investigated during 70 days the effects of two photoperiod regimes simulating the fall and spring in western Europe, on pikeperch physiological and immune responses. Samples were collected at 04:00 and 15:00 at days 1, 37 and 70. Growth, plasma melatonin levels, innate immune markers and expression of immune-relevant genes in head kidney tissue were assessed. While growth and stress level were not affected by the seasonal simulated photoperiods, nocturnal levels of plasma melatonin were photoperiod-dependent. Innate immune markers, including lysozyme, complement, peroxidase and phagocytic activities, were stimulated by the fall-simulated photoperiod and a significant correlation was made with plasma melatonin. In addition to bring the first evidence of changes in fish immunocompetence related to photoperiod, our results provide an additional indication supporting the immunomodulatory action of melatonin in teleosts.
Address Research Unit in Environmental and Evolutionary Biology (URBE), Institute of Life, Earth & Environment, University of Namur, Rue de Bruxelles 61, Namur, B-5000, Belgium
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2045-2322 ISBN Medium
Area Expedition Conference
Notes PMID:32060347; PMCID:PMC7021833 Approved no
Call Number GFZ @ kyba @ Serial 2942
Permanent link to this record
 

 
Author Amano, T.; Ripperger, J.A.; Albrecht, U.
Title Changing the light schedule in late pregnancy alters birth timing in mice Type Journal Article
Year 2020 Publication Theriogenology Abbreviated Journal Theriogenology
Volume in press Issue Pages
Keywords (up) Animals
Abstract In rats, birth timing is affected by changes in the light schedule until the middle of the pregnancy period. This phenomenon can be used to control birth timing in the animal industry and/or clinical fields. However, changes in the light schedule until the middle of the pregnancy period can damage the fetus by affecting the development of the major organs. Thus, we compared birth timing in mice kept under a 12-h light/12-h darkness schedule (L/D) throughout pregnancy with that of mice kept under a light schedule that changed from L/D to constant light (L/L) or constant darkness (D/D) from day 17.5 of pregnancy, the latter phase of the pregnancy period. On average, the pregnancy period was longer in D/D mice (19.9 days) than L/L or L/D mice (19.5 and 19.3 days, respectively, P < 0.05), confirming that light schedule affects birth timing. The average number of newborns was the same in L/L, L/D, and D/D mice (7.5, 7.8, and 7.9, respectively), but the average newborn weight of L/L mice (1.3 g) was lower than that of L/D and D/D mice (both 1.4 g, P < 0.05), indicating that constant light has detrimental effects on fetus growth. However, the percentage of dead newborns was the same between L/L, L/D, and D/D mice (11.1, 10.6, and 3.6%, respectively). The serum progesterone level on day 18.5 of pregnancy in L/D mice was 42.8 ng/ml, lower (P < 0.05) than that of D/D mice (65.3 ng/ml), suggesting that light schedule affects luteolysis. The average pregnancy period of mice lacking a circadian clock kept under D/D conditions from day 17.5 of pregnancy (KO D/D) (20.3 days) was delayed compared with wild-type (WT) D/D mice (P < 0.05). However, the average number of newborns, percentage of births with dead pups, and weight per newborn of KO D/D mice (7.6, 3.6%, and 1.4 g, respectively) were the same as WT mice kept under D/D conditions. A direct effect of the circadian clock on the mechanism(s) regulating birth timing was questionable, as the lighter average weight per KO fetus (0.6 g) versus WT fetus (0.7 g) on day 17.5 of pregnancy might have caused the delay in birth. The range of birth timing in KO D/D mice was the same as that of WT D/D mice, indicating that the circadian clock does not concentrate births at one time.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0093691X ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number GFZ @ kyba @ Serial 2943
Permanent link to this record
 

 
Author Bolliger, J. Hennet, T., Wermelinger, B., Blum, S., Haller, J. & Obrist, M.
Title Low impact of two LED colors on nocturnal insect abundance and bat activity in a peri‑urban environment Type Journal Article
Year 2020 Publication Journal of Insect Conservation Abbreviated Journal
Volume Issue Pages
Keywords (up) Animals
Abstract Artifcial light at night (ALAN) is an important driver of change in ecological environments of the 21th century. We investigated the impact on nocturnal insect abundance and bat activity of two LED light colors (warm-white 2700 K, cold-white

6500 K) in a peri-urban environment. Bat activity (predominantly Pipistrellus pipistrellus) was largely driven by prey availability (insects), while insect abundance was responsive to nightly weather conditions (precipitation, temperature). Thus, both insects and bats were not diferentially responsive to cold-white or warm-white LEDs. These fndings are largely in contrast with literature, particularly for insects. However, as most published experiments on ALAN were conducted in areas that were lit solely for the purpose of the experiment, we would like to bring forward that (1) adaptation to environmental constraints may play a role in peri-urban environments that have been exposed to ALAN for many decades; or (2) impacts of cold-white LEDs on nocturnal insects may be lower than expected, because nocturnal insects adapted to low-light conditions may be put of by cold white light sources (6500 K).
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number IDA @ intern @ Serial 2957
Permanent link to this record