|   | 
Details
   web
Records
Author Hong, F.; Pan, S.; Xu, P.; Xue, T.; Wang, J.; Guo, Y.; Jia, L.; Qiao, X.; Li, L.; Zhai, Y.
Title Melatonin Orchestrates Lipid Homeostasis through the Hepatointestinal Circadian Clock and Microbiota during Constant Light Exposure Type Journal Article
Year 2020 Publication Cells Abbreviated Journal Cells
Volume 9 Issue 2 Pages in press
Keywords (up) Animals; Cells; Lan; hepatointestinal; lipid homeostasis; melatonin; microbiota
Abstract Misalignment between natural light rhythm and modern life activities induces disruption of the circadian rhythm. It is mainly evident that light at night (LAN) interferes with the human endocrine system and contributes to the increasing rates of obesity and lipid metabolic disease. Maintaining hepatointestinal circadian homeostasis is vital for improving lipid homeostasis. Melatonin is a chronobiotic substance that plays a main role in stabilizing bodily rhythm and has shown beneficial effects in protecting against obesity. Based on the dual effect of circadian rhythm regulation and antiobesity, we tested the effect of melatonin in mice under constant light exposure. Exposure to 24-h constant light (LL) increased weight and insulin resistance compared with those of the control group (12-h light-12-h dark cycle, LD), and simultaneous supplementation in the melatonin group (LLM) ameliorated this phenotype. Constant light exposure disturbed the expression pattern of a series of transcripts, including lipid metabolism, circadian regulation and nuclear receptors in the liver. Melatonin also showed beneficial effects in improving lipid metabolism and circadian rhythm homeostasis. Furthermore, the LL group had increased absorption and digestion of lipids in the intestine as evidenced by the elevated influx of lipids in the duodenum and decrease in the efflux of lipids in the jejunum. More interestingly, melatonin ameliorated the gut microbiota dysbiosis and improved lipid efflux from the intestine. Thus, these findings offer a novel clue regarding the obesity-promoting effect attributed to LAN and suggest a possibility for obesity therapy by melatonin in which melatonin could ameliorate rhythm disorder and intestinal dysbiosis.
Address Key Laboratory for Cell Proliferation and Regulation Biology of State Education Ministry, College of Life Sciences, Beijing Normal University, Beijing 100875, China
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2073-4409 ISBN Medium
Area Expedition Conference
Notes PMID:32093272 Approved no
Call Number GFZ @ kyba @ Serial 2854
Permanent link to this record
 

 
Author Haraguchi, S.; Kamata, M.; Tokita, T.; Tashiro, K.-I.; Sato, M.; Nozaki, M.; Okamoto-Katsuyama, M.; Shimizu, I.; Han, G.; Chowdhury, V.S.; Lei, X.-F.; Miyazaki, T.; Kim-Kaneyama, J.-R.; Nakamachi, T.; Matsuda, K.; Ohtaki, H.; Tokumoto, T.; Tachibana, T.; Miyazaki, A.; Tsutsui, K.
Title Light-at-night exposure affects brain development through pineal allopregnanolone-dependent mechanisms Type Journal Article
Year 2019 Publication ELife Abbreviated Journal Elife
Volume 8 Issue Pages e45306
Keywords (up) Animals; chicken; neuroscience; Circadian disruption; pineal allopregnanolone; cell death
Abstract The molecular mechanisms by which environmental light conditions affect cerebellar development are incompletely understood. We showed that circadian disruption by light-at-night induced Purkinje cell death through pineal allopregnanolone (ALLO) activity during early life in chicks. Light-at-night caused the loss of diurnal variation of pineal ALLO synthesis during early life and led to cerebellar Purkinje cell death, which was suppressed by a daily injection of ALLO. The loss of diurnal variation of pineal ALLO synthesis induced not only reduction in pituitary adenylate cyclase-activating polypeptide (PACAP), a neuroprotective hormone, but also transcriptional repression of the cerebellar Adcyap1 gene that produces PACAP, with subsequent Purkinje cell death. Taken together, pineal ALLO mediated the effect of light on early cerebellar development in chicks.
Address Department of Biology, Waseda University, Tokyo, Japan; shogo.haraguchi(at)gmail.com
Corporate Author Thesis
Publisher eLife Place of Publication Editor
Language English Summary Language English Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2050-084X ISBN Medium
Area Expedition Conference
Notes PMID:31566568 Approved no
Call Number GFZ @ kyba @ Serial 2694
Permanent link to this record
 

 
Author Mouland, J.W.; Martial, F.; Watson, A.; Lucas, R.J.; Brown, T.M.
Title Cones Support Alignment to an Inconsistent World by Suppressing Mouse Circadian Responses to the Blue Colors Associated with Twilight Type Journal Article
Year 2019 Publication Current Biology Abbreviated Journal Current Biology
Volume 29 Issue 24 Pages 4260-4267.e4
Keywords (up) Animals; Circadian Rhythm; mouse models; cones
Abstract In humans, short-wavelength light evokes larger circadian responses than longer wavelengths. This reflects the fact that melanopsin, a key contributor to circadian assessments of light intensity, most efficiently captures photons around 480 nm and gives rise to the popular view that ‘‘blue’’ light exerts the strongest effects on the clock. However, in the natural world, there is often no direct correlation be- tween perceived color (as reported by the cone-based visual system) and melanopsin excitation. Accordingly, although the mammalian clock does receive cone-based chromatic signals, the influence of color on circadian responses to light remains unclear. Here, we define the nature and functional significance of chromatic influences on the mouse circadian sys- tem. Using polychromatic lighting and mice with altered cone spectral sensitivity (Opn1mwR), we generate conditions that differ in color (i.e., ratio of L- to S-cone opsin activation) while providing identical melanopsin and rod activation. When biased toward S-opsin activation (appearing ‘‘blue’’), these stimuli reliably produce weaker circadian behavioral responses than those favoring L-opsin (‘‘yellow’’). This influence of color (which is absent in animals lacking cone phototransduction; Cnga3/) aligns with natural changes in spectral composition over twilight, where decreasing solar angle is accompanied by a strong blue shift. Accordingly, we find that naturalistic color changes support circadian alignment when environmental conditions render diurnal variations in light intensity weak/ambiguous sources of timing information. Our data thus establish how color contributes to circadian entrainment in mammals and provide important new insight to inform the design of lighting environments that benefit health.
Address Centre for Biological Timing, Faculty of Biology, Medicine & Health, University of Manchester, Oxford Road, Manchester M13 9PT, UK; timothy.brown(at)manchester.ac.uk
Corporate Author Thesis
Publisher Cell Place of Publication Editor
Language English Summary Language English Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0960-9822 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number IDA @ john @ Serial 2785
Permanent link to this record
 

 
Author Leveau, L.M.
Title Artificial Light at Night (ALAN) Is the Main Driver of Nocturnal Feral Pigeon (Columba livia f. domestica) Foraging in Urban Areas Type Journal Article
Year 2020 Publication Animals : an Open Access Journal From MDPI Abbreviated Journal Animals (Basel)
Volume 10 Issue 4 Pages
Keywords (up) Animals; Columba livia; Latin America; artificial light at night; circadian rhythm; noise; temporal homogenization
Abstract Artificial light at night (ALAN) is one of the most extreme environmental alterations in urban areas, which drives nocturnal activity in diurnal species. Feral Pigeon (Columba livia f. domestica), a common species in urban centers worldwide, has been observed foraging at night in urban areas. However, the role of ALAN in the nocturnal activity of this species is unknown. Moreover, studies addressing the relationship between ALAN and nocturnal activity of diurnal birds are scarce in the Southern Hemisphere. The objective of this study is to assess the environmental factors associated with nocturnal activity of the Feral Pigeon in Argentinian cities. Environmental conditions were compared between sites where pigeons were seen foraging and randomly selected sites where pigeons were not recorded foraging. Nocturnal foraging by the Feral Pigeon was recorded in three of four surveyed cities. ALAN was positively related to nocturnal foraging activity in Salta and Buenos Aires. The results obtained suggest that urbanization would promote nocturnal activity in Feral Pigeons. Moreover, nocturnal activity was mainly driven by ALAN, which probably alters the circadian rhythm of pigeons.
Address Departamento de Ecologia, Genetica y Evolucion, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires – IEGEBA (CONICET – UBA), Ciudad Universitaria, Pab 2, Piso 4, Buenos Aires 1426, Argentina
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2076-2615 ISBN Medium
Area Expedition Conference
Notes PMID:32224903 Approved no
Call Number GFZ @ kyba @ Serial 2876
Permanent link to this record
 

 
Author Manríquez, P.H.; Jara, M.E.; Diaz, M.I.; Quijón, P.A.; Widdicombe, S.; Pulgar, J.; Manríquez, K.; Quintanilla-Ahumada, D.; Duarte, C.
Title Artificial light pollution influences behavioral and physiological traits in a keystone predator species, Concholepas concholepas Type Journal Article
Year 2019 Publication Science of The Total Environment Abbreviated Journal Science of The Total Environment
Volume 661 Issue Pages 543-552
Keywords (up) Animals; Concholepas concholepas; sea snails; mollusks; Muricidae
Abstract Artificial Light At Night (ALAN) is an increasing global problem that, despite being widely recognized in terrestrial systems, has been studied much less in marine habitats. In this study we investigated the effect of ALAN on behavioral and physiological traits of Concholepas concholepas, an important keystone species of the south-eastern Pacific coast. We used juveniles collected in intertidal habitats that had not previously been exposed to ALAN. In the laboratory we exposed them to two treatments: darkness and white LED (Lighting Emitting Diodes) to test for the impacts of ALAN on prey-searching behavior, self-righting time and metabolism. In the field, the distribution of juveniles was observed during daylight-hours to determine whether C. concholepas preferred shaded or illuminated microhabitats. Moreover, we compared the abundance of juveniles collected during day- and night-time hours. The laboratory experiments demonstrated that juveniles of C. concholepas seek out and choose their prey more efficiently in darkened areas. White LED illuminated conditions increased righting times and metabolism. Field surveys indicated that, during daylight hours, juveniles were more abundant in shaded micro-habitats than in illuminated ones. However, during darkness hours, individuals were not seen to aggregate in any particular microhabitats. We conclude that the exposure to ALAN might disrupt important behavioral and physiological traits of small juveniles in this species which, as a mechanism to avoid visual predators, are mainly active at night. It follows that ALAN in coastal areas might modify the entire community structure of intertidal habitats by altering the behavior of this keystone species.
Address Centro de Estudios Avanzados en Zonas Áridas (CEAZA), Coquimbo, Chile; atriciohmanriquez(at)gmail.com
Corporate Author Thesis
Publisher Elsevier Place of Publication Editor
Language English Summary Language English Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0048-9697 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number GFZ @ kyba @ Serial 2173
Permanent link to this record