toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Welz, P.-S.; Zinna, V.M.; Symeonidi, A.; Koronowski, K.B.; Kinouchi, K.; Smith, J.G.; Guillen, I.M.; Castellanos, A.; Crainiciuc, G.; Prats, N.; Caballero, J.M.; Hidalgo, A.; Sassone-Corsi, P.; Benitah, S.A. url  doi
openurl 
  Title BMAL1-Driven Tissue Clocks Respond Independently to Light to Maintain Homeostasis Type Journal Article
  Year 2019 Publication Cell Abbreviated Journal Cell  
  Volume 177 Issue 6 Pages 1436-1447.e12  
  Keywords (up) Animals  
  Abstract Circadian rhythms control organismal physiology throughout the day. At the cellular level, clock regulation is established by a self-sustained Bmal1-dependent transcriptional oscillator network. However, it is still unclear how different tissues achieve a synchronized rhythmic physiology. That is, do they respond independently to environmental signals, or require interactions with each other to do so? We show that unexpectedly, light synchronizes the Bmal1-dependent circadian machinery in single tissues in the absence of Bmal1 in all other tissues. Strikingly, light-driven tissue autonomous clocks occur without rhythmic feeding behavior and are lost in constant darkness. Importantly, tissue-autonomous Bmal1 partially sustains homeostasis in otherwise arrhythmic and prematurely aging animals. Our results therefore support a two-branched model for the daily synchronization of tissues: an autonomous response branch, whereby light entrains circadian clocks without any commitment of other Bmal1-dependent clocks, and a memory branch using other Bmal1-dependent clocks to “remember” time in the absence of external cues.  
  Address Institute for Research in Biomedicine (IRB Barcelona), Barcelona Institute of Science and Technology, 08028 Barcelona, Spain; ICREA, Catalan Institution for Research and Advanced Studies, 08010 Barcelona, Spain. Electronic address: salvador.aznar-benitah@irbbarcelona.org  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0092-8674 ISBN Medium  
  Area Expedition Conference  
  Notes PMID:31150620 Approved no  
  Call Number GFZ @ kyba @ Serial 2513  
Permanent link to this record
 

 
Author Opperhuizen, A.-L.; Foppen, E.; Jonker, M.; Wackers, P.; van Faassen, M.; van Weeghel, M.; van Kerkhof, L.; Fliers, E.; Kalsbeek, A. url  doi
openurl 
  Title Effects of Light-at-Night on the Rat Liver – A Role for the Autonomic Nervous System Type Journal Article
  Year 2019 Publication Frontiers in Neuroscience Abbreviated Journal Front. Neurosci.  
  Volume 13 Issue Pages  
  Keywords (up) Animals  
  Abstract Exposure to light at night (LAN) has been associated with serious pathologies, including obesity, diabetes and cancer. Recently we showed that 2 h of LAN impaired glucose tolerance in rats. Several studies have suggested that the autonomic nervous system (ANS) plays an important role in communicating these acute effects of LAN to the periphery. Here, we investigated the acute effects of LAN on the liver transcriptome of male Wistar rats. Expression levels of individual genes were not markedly affected by LAN, nevertheless pathway analysis revealed clustered changes in a number of endocrine pathways. Subsequently, we used selective hepatic denervations [sympathetic (Sx), parasympathetic (Px), total (Tx, i.e., Sx plus Px), sham] to investigate the involvement of the ANS in the effects observed. Surgical removal of the sympathetic or parasympathetic hepatic branches of the ANS resulted in many, but small changes in the liver transcriptome, including a pathway involved with circadian clock regulation, but it clearly separated the four denervation groups. On the other hand, analysis of the liver metabolome was not able to separate the denervation groups, and only 6 out of 78 metabolites were significantly up- or downregulated after denervations. Finally, removal of the sympathetic and parasympathetic hepatic nerves combined with LAN exposure clearly modulated the effects of LAN on the liver transcriptome, but left most endocrine pathways unaffected.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1662-453X ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number IDA @ intern @ Serial 2539  
Permanent link to this record
 

 
Author Molcan, L.; Sutovska, H.; Okuliarova, M.; Senko, T.; Krskova, L.; Zeman, M. url  doi
openurl 
  Title Dim light at night attenuates circadian rhythms in the cardiovascular system and suppresses melatonin in rats Type Journal Article
  Year 2019 Publication Life Sciences Abbreviated Journal Life Sci  
  Volume 231 Issue Pages 116568  
  Keywords (up) Animals  
  Abstract AIMS: Cardiovascular parameters exhibit significant 24-h variability, which is coordinated by the suprachiasmatic nucleus (SCN), and light/dark cycles control SCN activity. We aimed to study the effects of light at night (ALAN; 1-2lx) on cardiovascular system control in normotensive rats. MAIN METHODS: Heart rate (HR) and blood pressure (BP) were measured by telemetry during five weeks of ALAN exposure. From beat-to-beat telemetry data, we evaluated spontaneous baroreflex sensitivity (sBRS). After 2 (A2) and 5 (A5) weeks of ALAN, plasma melatonin concentrations and the response of BP and HR to norepinephrine administration were measured. The expression of endothelial nitric oxide synthase (eNOS) and endothelin-1 was determined in the aorta. Spontaneous exploratory behaviour was evaluated in an open-field test. KEY FINDINGS: ALAN significantly suppressed the 24-h variability in the HR, BP, and sBRS after A2, although the parameters were partially restored after A5. The daily variability in the BP response to norepinephrine was reduced after A2 and restored after A5. ALAN increased the BP response to norepinephrine compared to the control after A5. Increased eNOS expression was found in arteries after A2 but not A5. Endothelin-1 expression was not affected by ALAN. Plasma melatonin levels were suppressed after A2 and A5. Spontaneous exploratory behaviour was reduced. SIGNIFICANCE: ALAN decreased plasma melatonin and the 24-h variability in the haemodynamic parameters and increased the BP response to norepinephrine. A low intensity ALAN can suppress circadian control of the cardiovascular system with negative consequences on the anticipation of a load.  
  Address Department of Animal Physiology and Ethology, Faculty of Natural Sciences, Comenius University, Bratislava, Slovakia  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0024-3205 ISBN Medium  
  Area Expedition Conference  
  Notes PMID:31202842 Approved no  
  Call Number GFZ @ kyba @ Serial 2548  
Permanent link to this record
 

 
Author Marín-Gómez, O.H, & MacGregor-Fors, I. url  doi
openurl 
  Title How Early Do Birds Start Chirping? Dawn Chorus Onset and Peak Times in a Neotropical City Type Journal Article
  Year 2019 Publication Ardeola Abbreviated Journal  
  Volume 66 Issue 2 Pages 327-341  
  Keywords (up) Animals  
  Abstract Urbanisation poses important challenges for animal communication. Avian dawn choruses are a prominent component of urban soundscapes and have received attention in recent urban ecology studies. Current evidence based on comparisons of urban and non-urban sites suggest that urbanisation is associated with earlier dawn chorus singing activity. However, this phenomenon remains mainly unexplored in tropical cities. We here assessed dawn chorus onset and peak times in two contrasting conditions of the urbanisation intensity gradient (i.e., intra-urban and peri-urban forested areas) of a Neotropical city, Xalapa in Mexico, assessing relationships with noise at sunrise and artificial light at night. We found no differences in dawn chorus onset or singing peak times when contrasting intra- and peri-urban areas. However, we found non-significant trends for earlier chorus onsets and peak times with increasing noise levels. Our results show no relationship between artificial light at night and dawn chorus timing, adding evidence to recent studies showing that light pollution does not seem to be determinant in the dawn choruses of tropical birds. Further research is needed to include a wider array of urbanisation conditions and drivers of the singing routines of urban tropical birds. —Marín-Gómez, O.H. & MacGregor-Fors, I. (2019). How early do birds start chirping? Dawn chorus onset and peak times in a Neotropical city.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number IDA @ intern @ Serial 2553  
Permanent link to this record
 

 
Author Beebe, W. openurl 
  Title Rediscovery of the Bermuda cahow Type Journal Article
  Year 1935 Publication Bulletin of the New York Zoological Society Abbreviated Journal  
  Volume 38 Issue Pages 187-190  
  Keywords (up) Animals  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number GFZ @ kyba @ Serial 2556  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: