|
Records |
Links |
|
Author |
Hoffmann, J.; Palme, R.; Eccard, J.A. |

|
|
Title |
Long-term dim light during nighttime changes activity patterns and space use in experimental small mammal populations |
Type |
Journal Article |
|
Year |
2018 |
Publication |
Environmental Pollution |
Abbreviated Journal |
Environ Pollut |
|
|
Volume |
238 |
Issue |
|
Pages |
844-851 |
|
|
Keywords  |
Animals |
|
|
Abstract |
Artificial light at night (ALAN) is spreading worldwide and thereby is increasingly interfering with natural dark-light cycles. Meanwhile, effects of very low intensities of light pollution on animals have rarely been investigated. We explored the effects of low intensity ALAN over seven months in eight experimental bank vole (Myodes glareolus) populations in large grassland enclosures over winter and early breeding season, using LED garden lamps. Initial populations consisted of eight individuals (32 animals per hectare) in enclosures with or without ALAN. We found that bank voles under ALAN experienced changes in daily activity patterns and space use behavior, measured by automated radiotelemetry. There were no differences in survival and body mass, measured with live trapping, and none in levels of fecal glucocorticoid metabolites. Voles in the ALAN treatment showed higher activity at night during half moon, and had larger day ranges during new moon. Thus, even low levels of light pollution as experienced in remote areas or by sky glow can lead to changes in animal behavior and could have consequences for species interactions. |
|
|
Address |
Animal Ecology, University of Potsdam, Maulbeerallee 1, 14469, Potsdam, Germany |
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
English |
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
0269-7491 |
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
|
|
|
Notes |
PMID:29627754 |
Approved |
no |
|
|
Call Number |
GFZ @ kyba @ |
Serial |
1848 |
|
Permanent link to this record |
|
|
|
|
Author |
Eriksen, A.; Wabakken, P. |

|
|
Title |
Activity patterns at the Arctic Circle: nocturnal eagle owls and interspecific interactions during continuous midsummer daylight |
Type |
Journal Article |
|
Year |
2018 |
Publication |
Journal of Avian Biology |
Abbreviated Journal |
J Avian Biol |
|
|
Volume |
49 |
Issue |
7 |
Pages |
e01781 |
|
|
Keywords  |
Animals |
|
|
Abstract |
Circadian rhythms result from adaptations to biotic and abiotic environmental conditions that cycle through the day, such as light, temperature, or temporal overlap between interacting species. At high latitudes, close to or beyond the polar circles, uninterrupted midsummer daylight may pose a challenge to the circadian rhythms of otherwise nocturnal species, such as eagle owls Bubo bubo. By non‐invasive field methods, we studied eagle owl activity in light of their interactions with their main prey the water vole Arvicola amphibius, and their competitor the white‐tailed eagle Haliaeetus albicilla during continuous midsummer daylight on open, treeless islands in coastal Northern Norway. We evaluated circadian rhythms, temporal overlap, exposure, and spatial distribution. The owls maintained a nocturnal activity pattern, possibly because slightly dimmer light around midnight offered favourable hunting conditions. The eagles were active throughout the 24‐hour period as opposed to the strictly diurnal rhythm reported elsewhere, thus increasing temporal overlap and the potential for interference competition between the two avian predators. This may indicate an asymmetry, with the owls facing the highest cost of interference competition. The presence of eagles combined with constant daylight in this open landscape may make the owls vulnerable to interspecific aggression, and contrary to the available literature, eagle owls rarely exposed themselves visually during territorial calls, possibly to avoid detection by eagles. We found indications of spatial segregation between owls and eagles reflecting differences in main prey, possibly in combination with habitat‐mediated avoidance. Eagle owl vocal activity peaked in the evening before a nocturnal peak in visual observations, when owls were active hunting, consistent with the hypothesis of a dusk chorus in nocturnal bird species. The owls may have had to trade‐off between calling and foraging during the few hours around midnight when slightly dimmer light reduced the detection risk while also providing better hunting conditions. |
|
|
Address |
|
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
0908-8857 |
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
|
|
|
Notes |
|
Approved |
no |
|
|
Call Number |
GFZ @ kyba @ |
Serial |
1881 |
|
Permanent link to this record |
|
|
|
|
Author |
Madahi, P.-G.; Ivan, O.; Adriana, B.; Diana, O.; Carolina, E. |

|
|
Title |
Constant light during lactation programs circadian and metabolic systems |
Type |
Journal Article |
|
Year |
2018 |
Publication |
Chronobiology International |
Abbreviated Journal |
Chronobiol Int |
|
|
Volume |
35 |
Issue |
8 |
Pages |
1153-1167 |
|
|
Keywords  |
Animals |
|
|
Abstract |
Exposure to light at night is a disruptive condition for the adult circadian system, leading to arrhythmicity in nocturnal rodents. Circadian disruption is a risk factor for developing physiological and behavioral alterations, including weight gain and metabolic disease. During early stages of development, the circadian system undergoes a critical period of adjustment, and it is especially vulnerable to altered lighting conditions that may program its function, leading to long-term effects. We hypothesized that during lactation a disrupted light-dark cycle due to light at night may disrupt the circadian system and in the long term induce metabolic disorders. Here we explored in pups, short- and long-term effects of constant light (LL) during lactation. In the short term, LL caused a loss of rhythmicity and a reduction in the immunopositive cells of VIP, AVP, and PER1 in the suprachiasmatic nucleus (SCN). In the short term, the affection on the circadian clock in the pups resulted in body weight gain, loss of daily rhythms in general activity, plasma glucose and triglycerides (TG). Importantly, the DD conditions during development also induced altered daily rhythms in general activity and in the SCN. Exposure to LD conditions after lactation did not restore rhythmicity in the SCN, and the number of immunopositve cells to VIP, AVP, and PER1 remained reduced. In the long term, daily rhythmicity in general activity was restored; however, daily rhythms in glucose and TG remained disrupted, and daily mean levels of TG were significantly increased. Present results point out the programming role played by the LD cycle during early development in the function of the circadian system and on metabolism. This study points out the risk represented by exposure to an altered light-dark cycle during early stages of development. ABBREVIATIONS: AVP: arginine vasopressin peptide; CRY: cryptochrome; DD: constant darkness; DM: dorsomedial; LD: light-dark cycle; LL: constant light; NICUs: neonatal intensive care units; P: postnatal days; PER: period; S.E.M.: standard error of the mean; SCN: suprachiasmatic nucleus; TG: triglycerides; VIP: vasointestinal peptide; VL: ventrolateral; ZT: zeitgeber time. |
|
|
Address |
a Facultad de Medicina , Universidad Nacional Autonoma de Mexico, UNAM , Mexico City , Mexico |
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
English |
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
0742-0528 |
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
|
|
|
Notes |
PMID:29688088 |
Approved |
no |
|
|
Call Number |
GFZ @ kyba @ |
Serial |
1884 |
|
Permanent link to this record |
|
|
|
|
Author |
McLay, L.K.; Nagarajan-Radha, V.; Green, M.P.; Jones, T.M. |

|
|
Title |
Dim artificial light at night affects mating, reproductive output, and reactive oxygen species in Drosophila melanogaster |
Type |
Journal Article |
|
Year |
2018 |
Publication |
Journal of Experimental Zoology. Part A, Ecological and Integrative Physiology |
Abbreviated Journal |
J Exp Zool A Ecol Integr Physiol |
|
|
Volume |
329 |
Issue |
8-9 |
Pages |
419-428 |
|
|
Keywords  |
Animals |
|
|
Abstract |
Humans are lighting the night-time environment with ever increasing extent and intensity, resulting in a variety of negative ecological effects in individuals and populations. Effects of light at night on reproductive fitness traits are demonstrated across taxa however, the mechanisms underlying these effects are largely untested. One possible mechanism is that light at night may result in perturbed reactive oxygen species (ROS) and oxidative stress levels. Here, we reared Drosophila melanogaster under either dim (10 lx) light or no light (0 lx) at night for three generations and then compared mating and lifetime oviposition patterns. In a second experiment, we explored whether exposure to light at night treatments resulted in variation in ROS levels in the heads and ovaries of six, 23- and 36-day-old females. We demonstrate that dim light at night affects mating and reproductive output: 10 lx flies courted for longer prior to mating, and female oviposition patterns differed to 0 lx females. ROS levels were lower in the ovaries but not heads, of 10 lx compared with 0 lx females. We suggest that reduced ROS levels may reflect changes in ovarian physiology and cell signaling, which may be related to the differences observed in oviposition patterns. Taken together, our results indicate negative consequences for invertebrates under more stressful, urban, lit conditions and further investigation into the mechanisms driving these changes is warranted to manage invertebrate communities in a brighter future. |
|
|
Address |
School of BioSciences, Faculty of Science, The University of Melbourne, Melbourne, Victoria, Australia |
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
English |
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
2471-5638 |
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
|
|
|
Notes |
PMID:29733537 |
Approved |
no |
|
|
Call Number |
GFZ @ kyba @ |
Serial |
1889 |
|
Permanent link to this record |
|
|
|
|
Author |
Borck, P.C.; Batista, T.M.; Vettorazzi, J.F.; Soares, G.M.; Lubaczeuski, C.; Guan, D.; Boschero, A.C.; Vieira, E.; Lazar, M.A.; Carneiro, E.M. |

|
|
Title |
Nighttime light exposure enhances Rev-erbalpha-targeting microRNAs and contributes to hepatic steatosis |
Type |
Journal Article |
|
Year |
2018 |
Publication |
Metabolism: Clinical and Experimental |
Abbreviated Journal |
Metabolism |
|
|
Volume |
85 |
Issue |
|
Pages |
250-258 |
|
|
Keywords  |
Animals |
|
|
Abstract |
OBJECTIVE: The exposure to artificial light at night (ALAN) disrupts the biological rhythms and has been associated with the development of metabolic syndrome. MicroRNAs (miRNAs) display a critical role in fine-tuning the circadian system and energy metabolism. In this study, we aimed to assess whether altered miRNAs expression in the liver underlies metabolic disorders caused by disrupted biological rhythms. RESULTS: We found that C3H/HePas mice exposed to ALAN developed obesity, and hepatic steatosis, which was paralleled by decreased expression of Rev-erbalpha and up-regulation of its lipogenic targets ACL and FAS in liver. Furthermore, the expression of Rev-erbalpha-targeting miRNAs, miR-140-5p, 185-5p, 326-5p and 328-5p were increased in this group. Consistently, overexpression of these miRNAs in primary hepatocytes reduced Rev-erbalpha expression at the mRNA and protein levels. Importantly, overexpression of Rev-erbalpha-targeting miRNAs increased mRNA levels of Acly and Fasn. CONCLUSION: Thus, altered miRNA profile is an important mechanism underlying the disruption of the peripheral clock caused by exposure to ALAN, which could lead to hepatic steatosis. |
|
|
Address |
Obesity and Comorbidities Research Center, Institute of Biology, University of Campinas/UNICAMP, Campinas, SP, Brazil; Department of Structural and Functional Biology, Institute of Biology, University of Campinas/UNICAMP, Campinas, SP, Brazil |
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
English |
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
0026-0495 |
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
|
|
|
Notes |
PMID:29751019 |
Approved |
no |
|
|
Call Number |
GFZ @ kyba @ |
Serial |
1891 |
|
Permanent link to this record |