|   | 
Details
   web
Records
Author Wakefield, A.; Stone, E.L.; Jones, G.; Harris, S.
Title Light-emitting diode street lights reduce last-ditch evasive manoeuvres by moths to bat echolocation calls Type Journal Article
Year 2015 Publication Royal Society Open Science Abbreviated Journal Roy. Soc. Open Sci.
Volume 2 Issue 8 Pages
Keywords (up) Animals; artificial lighting; light-emitting diode; street lights; bats; moth predation; Nyctalus
Abstract The light-emitting diode (LED) street light market is expanding globally, and it is important to understand how LED lights affect wildlife populations. We compared evasive flight responses of moths to bat echolocation calls experimentally under LED-lit and -unlit conditions. Significantly, fewer moths performed ‘powerdive’ flight manoeuvres in response to bat calls (feeding buzz sequences from Nyctalus spp.) under an LED street light than in the dark. LED street lights reduce the anti-predator behaviour of moths, shifting the balance in favour of their predators, aerial hawking bats.
Address School of Biological Sciences, Life Sciences Building, University of Bristol, 24 Tyndall Avenue, Bristol BS8 1TQ, UK
Corporate Author Thesis
Publisher Royal Society Place of Publication Editor
Language English Summary Language English Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number IDA @ john @ Serial 1237
Permanent link to this record
 

 
Author Stone, E.L.; Harris, S.; Jones, G.
Title Impacts of artificial lighting on bats: a review of challenges and solutions Type Journal Article
Year 2015 Publication Zeitschrift für Säugetierkunde Abbreviated Journal Zeitschrift für Säugetierkunde
Volume Issue Pages
Keywords (up) Animals; bats
Abstract Light pollution is a major emerging issue in biodiversity conservation, and has important implications for policy development and strategic planning. Although research is now addressing the negative impacts of anthropogenic noise on biota, less attention has been paid to the effects of light pollution. Changes in lighting technology have led to a diverse range of emerging low energy light types and a trend towards the increased use of white light. Light pollution affects ecological interactions across a range of taxa and has adverse effects on behaviours such as foraging, reproduction and communication. Almost a quarter of bat species globally are threatened and the key underlying threat to populations is pressure on resources from increasing human populations. Being nocturnal, bats are among the taxa most likely to be affected by light pollution. In this paper we provide an overview of the current trends in artificial lighting followed by a review of the current evidence of the impacts of lighting on bat behaviour, particularly foraging, commuting, emergence, roosting and hibernation. We discuss taxon-specific effects and potential cumulative ecosystem level impacts. We conclude by summarising some potential strategies to minimise the impacts of lighting on bats and identify key gaps in knowledge and priority areas for future research.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1616-5047 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number LoNNe @ christopher.kyba @ Serial 1112
Permanent link to this record
 

 
Author Huffeldt, N.P.
Title Photic Barriers to Poleward Range-shifts Type Journal Article
Year 2020 Publication Trends in Ecology & Evolution Abbreviated Journal Trends Ecol Evol
Volume in press Issue Pages
Keywords (up) Animals; biological rhythm; global climate change; phenology; photoperiod; photoreception; range-shift
Abstract With climate warming, organisms are shifting their ranges towards the poles, tracking their optimal thermal environments. Day-length, the driver of daily and annual timing, is, however, fixed by latitude and date. Timing and photoreception mechanisms adapted to ancestral photic environments may restrict range-shift capacity, resulting in photic barriers to range-shifts.
Address Greenland Institute of Natural Resources, 3900 Nuuk, Greenland; Arctic Ecosystem Ecology, Department of Bioscience, Aarhus University, 4000 Roskilde, Denmark. Electronic address: nph@bios.au.dk
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0169-5347 ISBN Medium
Area Expedition Conference
Notes PMID:32473743 Approved no
Call Number GFZ @ kyba @ Serial 2992
Permanent link to this record
 

 
Author Quinn, D.; Kress, D.; Chang, E.; Stein, A.; Wegrzynski, M.; Lentink, D.
Title How lovebirds maneuver through lateral gusts with minimal visual information Type Journal Article
Year 2019 Publication Proceedings of the National Academy of Sciences of the United States of America Abbreviated Journal Proc Natl Acad Sci U S A
Volume 116 Issue 30 Pages 15033-15041
Keywords (up) Animals; bird; control; flight; gust; visual
Abstract Flying birds maneuver effectively through lateral gusts, even when gust speeds are as high as flight speeds. What information birds use to sense gusts and how they compensate is largely unknown. We found that lovebirds can maneuver through 45 degrees lateral gusts similarly well in forest-, lake-, and cave-like visual environments. Despite being diurnal and raised in captivity, the birds fly to their goal perch with only a dim point light source as a beacon, showing that they do not need optic flow or a visual horizon to maneuver. To accomplish this feat, lovebirds primarily yaw their bodies into the gust while fixating their head on the goal using neck angles of up to 30 degrees . Our corroborated model for proportional yaw reorientation and speed control shows how lovebirds can compensate for lateral gusts informed by muscle proprioceptive cues from neck twist. The neck muscles not only stabilize the lovebirds' visual and inertial head orientations by compensating low-frequency body maneuvers, but also attenuate faster 3D wingbeat-induced perturbations. This head stabilization enables the vestibular system to sense the direction of gravity. Apparently, the visual horizon can be replaced by a gravitational horizon to inform the observed horizontal gust compensation maneuvers in the dark. Our scaling analysis shows how this minimal sensorimotor solution scales favorably for bigger birds, offering local wind angle feedback within a wingbeat. The way lovebirds glean wind orientation may thus inform minimal control algorithms that enable aerial robots to maneuver in similar windy and dark environments.
Address Mechanical Engineering Department, Stanford University, Stanford, CA 94305; danquinn@virginia.edu dlentink@stanford.edu
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0027-8424 ISBN Medium
Area Expedition Conference
Notes PMID:31289235 Approved no
Call Number GFZ @ kyba @ Serial 2577
Permanent link to this record
 

 
Author Batra, T.; Malik, I.; Prabhat, A.; Bhardwaj, S.K.; Kumar, V.
Title Sleep in unnatural times: illuminated night negatively affects sleep and associated hypothalamic gene expressions in diurnal zebra finches Type Journal Article
Year 2020 Publication Proceedings. Biological Sciences Abbreviated Journal Proc Biol Sci
Volume 287 Issue 1928 Pages 20192952
Keywords (up) Animals; bird; dim light at night; gene expression; hypothalamus; sleep; zebra finch
Abstract We investigated the effects of exposure at ecologically relevant levels of dim light at night (dLAN) on sleep and the 24 h hypothalamic expression pattern of genes involved in the circadian timing (per2, bmal1, reverb-beta, cry1, ror-alpha, clock) and sleep regulatory pathways (cytokines: tlr4, tnf-alpha, il-1beta, nos; Ca(2+)-dependent pathway: camk2, sik3, nr3a; cholinergic receptor, achm3) in diurnal female zebra finches. Birds were exposed to 12 h light (150 lux) coupled with 12 h of absolute darkness or of 5 lux dim light for three weeks. dLAN fragmented the nocturnal sleep in reduced bouts, and caused sleep loss as evidenced by reduced plasma oxalate levels. Under dLAN, the 24 h rhythm of per2, but not bmal1 or reverb-beta, showed a reduced amplitude and altered peak expression time; however, clock, ror-alpha and cry1 expressions showed an abolition of the 24 h rhythm. Decreased tlr4, il-1beta and nos, and the lack of diurnal difference in achm3 messenger RNA levels suggested an attenuated inhibition of the arousal system (hence, awake state promotion) under dLAN. Similarly, changes in camk2, sik3 and nr3a expressions suggested dLAN-effects on Ca(2+)-dependent sleep-inducing pathways. These results demonstrate dLAN-induced negative effects on sleep and associated hypothalamic molecular pathways, and provide insights into health risks of illuminated night exposures to diurnal animals.
Address Department of Zoology, University of Delhi, Delhi 110 007, India
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0962-8452 ISBN Medium
Area Expedition Conference
Notes PMID:32517617 Approved no
Call Number GFZ @ kyba @ Serial 2995
Permanent link to this record