|   | 
Details
   web
Records
Author Gaston, M.S.; Pereyra, L.C.; Vaira, M.
Title Artificial light at night and captivity induces differential effects on leukocyte profile, body condition, and erythrocyte size of a diurnal toad Type Journal Article
Year 2018 Publication Journal of Experimental Zoology. Part A, Ecological and Integrative Physiology Abbreviated Journal J Exp Zool A Ecol Integr Physiol
Volume in press Issue Pages
Keywords (up) Animals; Amphibians; Toads
Abstract Light pollution or artificial lighting at night (ALAN) is an emerging threat to biodiversity that can disrupt physiological processes and behaviors. Because ALAN stressful effects are little studied in diurnal amphibian species, we investigated if chronic ALAN exposure affects the leukocyte profile, body condition, and blood cell sizes of a diurnal toad. We hand-captured male toads of Melanophryniscus rubriventris in Angosto de Jaire (Jujuy, Argentina). We prepared blood smears from three groups of toads: “field” (toads processed in the field immediately after capture), “natural light” (toads kept in the laboratory under captivity with natural photoperiod), and “constant light” (toads kept in the laboratory under captivity with constant photoperiod/ALAN). We significantly observed higher neutrophil proportions and neutrophils to lymphocytes ratio in toads under constant light treatment. In addition, we observed significantly better body condition and higher erythrocyte size in field toads compared with captive toads. In summary, ALAN can trigger a leukocyte response to stress in males of the diurnal toad M. rubriventris. In addition, captivity can affect the body condition and erythrocyte size of these toads.
Address Instituto de Ecorregiones Andinas (INECOA), Universidad Nacional de Jujuy, CONICET, San Salvador de Jujuy, Argentina
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2471-5638 ISBN Medium
Area Expedition Conference
Notes PMID:30320969 Approved no
Call Number GFZ @ kyba @ Serial 2049
Permanent link to this record
 

 
Author Sharma, A.; Goyal, R.
Title Long-term exposure to constant light induces dementia, oxidative stress and promotes aggregation of sub-pathological Abeta42 in Wistar rats Type Journal Article
Year 2020 Publication Pharmacology, Biochemistry, and Behavior Abbreviated Journal Pharmacol Biochem Behav
Volume in press Issue Pages 172892
Keywords (up) Animals; Amyloid beta; Behavior, fluoxetine, rifampicin; Oxidative stress
Abstract Constant exposure to light is prevalent in modern society where light noise, shift work, and jet lag is common. Constant light exposure disrupts circadian rhythm, induces stress and thus influences memory performance. We subjected adult male Wistar rats to a two-month exposure to constant light (LL), constant dark or normal light-dark cycles. Significant cognitive impairment and oxidative stress were observed in LL rats without a significant elevation in soluble Abeta1-42 levels. Next, we examined whether long-term exposure to constant light may accelerate dementia in a sub-pathological Abeta model of rats. Normal control rats received ACSF, AD rats received 440pmol, and sub-pathological Abeta rats (Abeta(s)) received 220pmol of human Abeta42 peptide in a single unilateral ICV administration. Sub-pathological Abeta rats exposed to constant light (LL+Abeta(s)) show significant memory deficits and oxidative damage, although not significantly different from LL rats. Additionally, constant light promoted aggregation of exogenous Abeta42 in LL+Abeta(s) rats shown by the presence of congophilic plaques. Furthermore, chronic fluoxetine treatment (5mg/kg/day) rescued rats from the behavioral deficits, oxidative damage and amyloid aggregation. Whereas, rifampicin treatment (20mg/kg/day) did not reverse the behavioral deficits or oxidative stress but rescued rats from amyloid plaque formation. It was concluded that constant light for two months induces behavioral deficits, oxidative stress, and accelerates aggregation of sub-pathological concentrations of human-Abeta42 peptides in Wistar rats, which is reversed by daily fluoxetine administration.
Address Neuropharmacology Laboratory, School of Pharmaceutical Sciences, Shoolini University, Solan 173 212, Himachal Pradesh, India. Electronic address: rohitgoyal@shooliniuniversity.com
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0091-3057 ISBN Medium
Area Expedition Conference
Notes PMID:32142744 Approved no
Call Number GFZ @ kyba @ Serial 2841
Permanent link to this record
 

 
Author Hoffmann, J.; Schirmer, A.; Eccard, J.A.
Title Light pollution affects space use and interaction of two small mammal species irrespective of personality Type Journal Article
Year 2019 Publication BMC Ecology Abbreviated Journal BMC Ecol
Volume 19 Issue 1 Pages 26
Keywords (up) Animals; Animal personality; Hirec; Interspecific interactions; Nighttime illumination; Outdoor enclosure; Rodents
Abstract BACKGROUND: Artificial light at night (ALAN) is one form of human-induced rapid environmental changes (HIREC) and is strongly interfering with natural dark-light cycles. Some personality types within a species might be better suited to cope with environmental change and therefore might be selected upon under ongoing urbanization. RESULTS: We used LED street lamps in a large outdoor enclosure to experimentally investigate the effects of ALAN on activity patterns, movement and interaction of individuals of two species, the bank vole (Myodes glareolus) and the striped field mouse (Apodemus agrarius). We analyzed effects combined with individual boldness score. Both species reduced their activity budget during daylight hours. While under natural light conditions home ranges were larger during daylight than during nighttime, this difference vanished under ALAN. Conspecifics showed reduced home range overlap, proximity and activity synchrony when subjected to nighttime illumination. Changes in movement patterns in reaction to ALAN were not associated with differences in boldness score of individuals. CONCLUSIONS: Our results suggest that light pollution can lead to changes in movement patterns and individual interactions in small mammals. This could lead to fitness consequences on the population level.
Address Animal Ecology, University of Potsdam, Maulbeerallee 1, 14469, Potsdam, Germany
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1472-6785 ISBN Medium
Area Expedition Conference
Notes PMID:31215409; PMCID:PMC6582560 Approved no
Call Number GFZ @ kyba @ Serial 2584
Permanent link to this record
 

 
Author Falchi, F.; Cinzano, P.; Elvidge, C.D.; Keith, D.M.; Haim, A.
Title Limiting the impact of light pollution on human health, environment and stellar visibility Type Journal Article
Year 2011 Publication Journal of Environmental Management Abbreviated Journal J Environ Manage
Volume 92 Issue 10 Pages 2714-2722
Keywords (up) Animals; Animals, Wild; Conservation of Natural Resources; Environment; *Environmental Pollution; Eye; *Health; Humans; Lighting/*adverse effects/standards; Melatonin/*antagonists & inhibitors; Sodium; Vision, Ocular/*physiology; Visual Perception
Abstract Light pollution is one of the most rapidly increasing types of environmental degradation. Its levels have been growing exponentially over the natural nocturnal lighting levels provided by starlight and moonlight. To limit this pollution several effective practices have been defined: the use of shielding on lighting fixture to prevent direct upward light, particularly at low angles above the horizon; no over lighting, i.e. avoid using higher lighting levels than strictly needed for the task, constraining illumination to the area where it is needed and the time it will be used. Nevertheless, even after the best control of the light distribution is reached and when the proper quantity of light is used, some upward light emission remains, due to reflections from the lit surfaces and atmospheric scatter. The environmental impact of this “residual light pollution”, cannot be neglected and should be limited too. Here we propose a new way to limit the effects of this residual light pollution on wildlife, human health and stellar visibility. We performed analysis of the spectra of common types of lamps for external use, including the new LEDs. We evaluated their emissions relative to the spectral response functions of human eye photoreceptors, in the photopic, scotopic and the 'meltopic' melatonin suppressing bands. We found that the amount of pollution is strongly dependent on the spectral characteristics of the lamps, with the more environmentally friendly lamps being low pressure sodium, followed by high pressure sodium. Most polluting are the lamps with a strong blue emission, like Metal Halide and white LEDs. Migration from the now widely used sodium lamps to white lamps (MH and LEDs) would produce an increase of pollution in the scotopic and melatonin suppression bands of more than five times the present levels, supposing the same photopic installed flux. This increase will exacerbate known and possible unknown effects of light pollution on human health, environment and on visual perception of the Universe by humans. We present quantitative criteria to evaluate the lamps based on their spectral emissions and we suggest regulatory limits for future lighting.
Address Istituto di Scienza e Tecnologia dell'Inquinamento Luminoso, Via Roma 13, I-36106 Thiene, Italy. falchi(at)lightpollution.it
Corporate Author Thesis
Publisher Elsevier Place of Publication Editor
Language English Summary Language English Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0301-4797 ISBN Medium
Area Expedition Conference
Notes PMID:21745709 Approved no
Call Number IDA @ john @ Serial 3031
Permanent link to this record
 

 
Author Aulsebrook, A.E.; Connelly, F.; Johnsson, R.D.; Jones, T.M.; Mulder, R.A.; Hall, M.L.; Vyssotski, A.L.; Lesku, J.A.
Title White and Amber Light at Night Disrupt Sleep Physiology in Birds Type Journal Article
Year 2020 Publication Current Biology : CB Abbreviated Journal Curr Biol
Volume in press Issue Pages
Keywords (up) Animals; anthropogenic; avian; blue light; circadian rhythms; electroencephalogram; light pollution; light spectra; sleep homeostasis; slow wave sleep; urbanization
Abstract Artificial light at night can disrupt sleep in humans [1-4] and other animals [5-10]. A key mechanism for light to affect sleep is via non-visual photoreceptors that are most sensitive to short-wavelength (blue) light [11]. To minimize effects of artificial light on sleep, many electronic devices shift from white (blue-rich) to amber (blue-reduced) light in the evening. Switching outdoor lighting from white to amber might also benefit wildlife [12]. However, whether these two colors of light affect sleep similarly in different animals remains poorly understood. Here we show, by measuring brain activity, that both white and amber lighting disrupt sleep in birds but that the magnitude of these effects differs between species. When experimentally exposed to light at night at intensities typical of urban areas, domestic pigeons (Columba livia) and wild-caught Australian magpies (Cracticus tibicen tyrannica) slept less, favored non-rapid eye movement (NREM) sleep over REM sleep, slept less intensely, and had more fragmented sleep compared to when lights were switched off. In pigeons, these disruptive effects on sleep were similar for white and amber lighting. For magpies, however, amber light had less impact on sleep. Our results demonstrate that amber lighting can minimize sleep disruption in some birds but that this benefit may not be universal.
Address School of Life Sciences, La Trobe University, Melbourne, VIC 3086, Australia
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0960-9822 ISBN Medium
Area Expedition Conference
Notes PMID:32707063 Approved no
Call Number GFZ @ kyba @ Serial 3080
Permanent link to this record