|   | 
Details
   web
Records
Author Levy, O.; Fernandes de Barros Marangoni, L.; Cohen, J.I.; Rottier, C.; Béraud, E.; Grover, R.; Ferrier-Pagès, C.
Title Artificial light at night (ALAN) alters the physiology and biochemistry of symbiotic reef building corals Type Journal Article
Year 2020 Publication Environmental Pollution Abbreviated Journal Environmental Pollution
Volume 266 Issue Pages 114987
Keywords (up) Animals; Ecology
Abstract Artificial Light at Night (ALAN), which is the alteration of natural light levels as the result of anthropogenic light sources, has been acknowledged as an important factor that alters the functioning of marine ecosystems. Using LEDs light to mimic ALAN, we studied the effect on the physiology (symbiont and chlorophyll contents, photosynthesis, respiration, pigment profile, skeletal growth, and oxidative stress responses) of two scleractinian coral species originating from the Red Sea. ALAN induced the photoinhibition of symbiont photosynthesis, as well as an overproduction of reactive oxygen species (ROS) and an increase in oxidative damage to lipids in both coral species. The extent of the deleterious effects of ALAN on the symbiotic association and coral physiology was aligned with the severity of the oxidative stress condition experienced by the corals. The coral species Sylophora pistillata, which experienced a more severe oxidative stress condition than the other species tested, Turbinaria reniformis, also showed a more pronounced bleaching (loss of symbionts and chlorophyll content), enhanced photoinhibition and decreased photosynthetic rates. Findings of the present study further our knowledge on the biochemical mechanisms underpinning the deleterious impacts of ALAN on scleractinian corals, ultimately shedding light on the emerging threat of ALAN on coral reef ecology. Further, considering that global warming and light pollution will increase in the next few decades, future studies should be taken to elucidate the potential synergetic effects of ALAN and global climate change stressors.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0269-7491 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number GFZ @ kyba @ Serial 2982
Permanent link to this record
 

 
Author van Grunsven, R.H.A.; van Deijk, J.R.; Donners, M.; Berendse, F.; Visser, M.E.; Veenendaal, E.; Spoelstra, K.
Title Experimental light at night has a negative long-term impact on macro-moth populations Type Journal Article
Year 2020 Publication Current Biology Abbreviated Journal Current Biology
Volume 30 Issue 12 Pages R694-R695
Keywords (up) Animals; Ecology
Abstract The current decline in insect numbers and biomass is likely due to several factors [1] and one of the lesser studied factors is the increased artificial light at night (ALAN). Several negative impacts of ALAN on insects have been described [2] but evidence that it ultimately results in population declines has been circumstantial due to a lack of emperical data [3,4]. Here, we experimentally exposed natural habitats to three colours of artificial light, and a dark control, and studied the impact on moth population numbers during five consecutive years. With this experimental, multi-year study, we can isolate the effects of artificial light from other anthropogenic factors that are often confounded in correlative studies. Furthermore, we can study long-term effects that only become apparent after several years. In the first two years, the number of moths in the illuminated and dark treatments did not differ, but after the second year, the number of moths in the illuminated treatments was lower than in the dark control (Figure 1). This first implies a causal relationship between ALAN and local population declines and thus a contribution of ALAN to insect declines.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0960-9822 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number GFZ @ kyba @ Serial 3011
Permanent link to this record
 

 
Author Bailey, L.A.; Brigham, R.M.; Bohn, S.J.; Boyles, J.G.; Smit, B.
Title An experimental test of the allotonic frequency hypothesis to isolate the effects of light pollution on bat prey selection Type Journal Article
Year 2019 Publication Oecologia Abbreviated Journal Oecologia
Volume 190 Issue 2 Pages 367–374
Keywords (up) Animals; Ecology; bats; moths; insects; mammals
Abstract Artificial lights may be altering interactions between bats and moth prey. According to the allotonic frequency hypothesis (AFH), eared moths are generally unavailable as prey for syntonic bats (i.e., bats that use echolocation frequencies between 20 and 50 kHz within the hearing range of eared moths) due to the moths' ability to detect syntonic bat echolocation. Syntonic bats therefore feed mainly on beetles, flies, true bugs, and non-eared moths. The AFH is expected to be violated around lights where eared moths are susceptible to exploitation by syntonic bats because moths' evasive strategies become less effective. The hypothesis has been tested to date almost exclusively in areas with permanent lighting, where the effects of lights on bat diets are confounded with other aspects of human habitat alteration. We undertook diet analysis in areas with short-term, localized artificial lighting to isolate the effects of artificial lighting and determine if syntonic and allotonic bats (i.e., bats that use echolocation frequencies outside the hearing range of eared moths) consumed more moths under conditions of artificial lights than in natural darkness. We found that syntonic bats increased their consumption of moth prey under experimentally lit conditions, likely owing to a reduction in the ability of eared moths to evade the bats. Eared moths may increase in diets of generalist syntonic bats foraging around artificial light sources, as opposed to allotonic species and syntonic species with a more specialized diet.
Address Department of Zoology and Entomology, Rhodes University, P.O. Box 94, Grahamstown, 6140, South Africa. b.smit@ru.ac.za
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0029-8549 ISBN Medium
Area Expedition Conference
Notes PMID:31139944 Approved no
Call Number GFZ @ kyba @ Serial 2511
Permanent link to this record
 

 
Author Seymoure, B. M., Linares, C., & White, J.
Title Connecting spectral radiometry of anthropogenic light sources to the visual ecology of organisms Type Journal Article
Year 2019 Publication Journal of Zoology Abbreviated Journal
Volume 308 Issue 2 Pages 93-110
Keywords (up) Animals; Ecology; color space; ecological consequences; just noticeable difference; light pollution; photoreceptors; radiance; visual models; visual systems
Abstract Humans have drastically altered nocturnal environments with electric lighting. Animals depend on natural night light conditions and are now being inundated with artificial lighting. There are numerous artificial light sources that differ in spectral composition that should affect the perception of these light sources and due to differences in animal visual systems, the differences in color perception of these anthropogenic light sources should vary significantly. The ecological and evolutionary ramifications of these perceptual differences of light sources remain understudied. Here, we quantify the radiance of nine different street lights comprised of four different light sources: Metal Halide, Mercury Vapor, Light Emitting Diodes, and High‐Pressure Sodium and model how five animal visual systems will be stimulated by these light sources. We calculated the number of photons that photoreceptors in different visual systems would detect. We selected five visual systems: avian UV/VIS, avian V/VIS, human, wolf and hawk moth. We included non‐visual photoreceptors of vertebrates known for controlling circadian rhythms and other physiological traits. The nine light types stimulated visual systems and the photoreceptors within the visual systems differently. Furthermore, we modelled the chromatic contrast (Just Noticeable Differences [JNDs]) and color space overlap for each light type comparison for each visual system to see if organisms would perceive the lights as different colors. The JNDs of most light type comparisons were very high, indicating most visual systems would detect all light types as different colors, however mammalian visual systems would perceive many lights as the same color. We discuss the importance of understanding not only the brightness of artificial light types, but also the spectral composition of light types, as most organisms have different visual systems from humans. Thus, for researchers to understand how artificial light sources affect the visual environment of specific organisms and thus mitigate the effects, spectral information is crucial.
Address Department of Biology, Colorado State University, Fort Collins, CO, USA; brett.seymoure(at)gmail.com
Corporate Author Thesis
Publisher ZSL Place of Publication Editor
Language English Summary Language English Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number IDA @ intern @ Serial 2306
Permanent link to this record
 

 
Author Donners, M.; van Grunsven, R.H.A.; Groenendijk, D.; van Langevelde, F.; Bikker, J.W.; Longcore, T.; Veenendaal, E.
Title Colors of attraction: Modeling insect flight to light behavior Type Journal Article
Year 2018 Publication Journal of Experimental Zoology. Part A, Ecological and Integrative Physiology Abbreviated Journal J Exp Zool A Ecol Integr Physiol
Volume 329 Issue 8-9 Pages 434-440
Keywords (up) Animals; ecology; Lighting
Abstract Light sources attract nocturnal flying insects, but some lamps attract more insects than others. The relation between the properties of a light source and the number of attracted insects is, however, poorly understood. We developed a model to quantify the attractiveness of light sources based on the spectral output. This model is fitted using data from field experiments that compare a large number of different light sources. We validated this model using two additional datasets, one for all insects and one excluding the numerous Diptera. Our model facilitates the development and application of light sources that attract fewer insects without the need for extensive field tests and it can be used to correct for spectral composition when formulating hypotheses on the ecological impact of artificial light. In addition, we present a tool allowing the conversion of the spectral output of light sources to their relative insect attraction based on this model.
Address Plant Ecology and Nature Conservation, Wageningen University, Wageningen, The Netherlands
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2471-5638 ISBN Medium
Area Expedition Conference
Notes PMID:29944198 Approved no
Call Number GFZ @ kyba @ Serial 1944
Permanent link to this record