|   | 
Details
   web
Records
Author Sierro, A., & Erhardt, A.
Title Light pollution hampers recolonization of revitalised European Nightjar habitats in the Valais (Swiss Alps) Type Journal Article
Year 2019 Publication Journal of Ornithology Abbreviated Journal
Volume 160 Issue 3 Pages 749–761
Keywords (up) Animals; Conservation; Birds; Caprimulgus europaeus; Conservation measures; Moth availability; Nocturnal adaptation
Abstract Increasing light emissions caused by human activities have been recognized as a major threat for nocturnal animals. In Switzerland, the European Nightjar is a rare bird, decreasing in numbers since the 1970s, and is therefore highly threatened. The last breeding population occurs in the canton Valais. Initial expert-based conservation measures on formerly inhabited breeding sites were successful until 2000, however recent additional measures have failed. Nightjars are highly sensitive to light due to their special retina adapted to living in semi-darkness. We hypothesized that food availability, mainly moths, is not a critical limiting factor, but that artificial light emissions prevent successful foraging as well as recolonizing revitalised breeding habitats of the nightjar. To test this hypothesis, we used light trapping data of moths from the last 30 years to evaluate food availability and compared light emission on abandoned versus still-occupied breeding sites. Abundance of larger moths did not change significantly over the last 30 years, and smaller moths even increased in abandoned as well as in still-occupied nightjar habitats. However, light emission was two to five times higher in abandoned compared to still-occupied sites. These results suggest that increasing light emission during recent decades has exceeded tolerable levels for this highly specialized night bird. Authorities of the canton Valais should therefore order a reduction in light emission near nightjar habitats by replacing bulbs currently in use with customized LED or broad-spectrum lamps low in white and blue light, and assign remaining nightjar habitats as areas of complete nocturnal darkness, thereby also protecting other threatened nocturnal animals, including moths.
Address Conservation Nature and Paysage, Sierre, Switzerland; antoine(at)naturarks.ch
Corporate Author Thesis
Publisher Springer Place of Publication Editor
Language English Summary Language English Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number IDA @ intern @ Serial 2300
Permanent link to this record
 

 
Author Shlesinger, T.; Loya, Y.
Title Breakdown in spawning synchrony: A silent threat to coral persistence Type Journal Article
Year 2019 Publication Science (New York, N.Y.) Abbreviated Journal Science
Volume 365 Issue 6457 Pages 1002-1007
Keywords (up) Animals; Coral
Abstract The impacts of human and natural disturbances on coral reefs are typically quantified through visible damage (e.g., reduced coral coverage as a result of bleaching events), but changes in environmental conditions may also cause damage in less visible ways. Despite the current paradigm, which suggests consistent, highly synchronized spawning events, corals that reproduce by broadcast spawning are particularly vulnerable because their reproductive phenology is governed by environmental cues. Here, we quantify coral spawning intensity during four annual reproductive seasons, alongside laboratory analyses at the polyp, colony, and population levels, and we demonstrate that, compared with historical data, several species from the Red Sea have lost their reproductive synchrony. Ultimately, such a synchrony breakdown reduces the probability of successful fertilization, leading to a dearth of new recruits, which may drive aging populations to extinction.
Address School of Zoology, George S. Wise Faculty of Life Sciences, Tel-Aviv University, Tel-Aviv 69978, Israel
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0036-8075 ISBN Medium
Area Expedition Conference
Notes PMID:31488683 Approved no
Call Number GFZ @ kyba @ Serial 2673
Permanent link to this record
 

 
Author Brady, A.; Willis, B.; Harder, L.; Vizel, P.
Title Lunar Phase Modulates Circadian Gene Expression Cycles in the Broadcast Spawning Coral Acropora millepora Type Journal Article
Year 2016 Publication Biological Bulletin Abbreviated Journal Biol Bullet
Volume 230 Issue 2 Pages 130-142
Keywords (up) Animals; corals; Acropora millepora; lunar cycle; Circadian Rhythm; gene expression; moon
Abstract Many broadcast spawning corals in multiple reef regions release their gametes with incredible temporal precision just once per year, using the lunar cycle to set the night of spawning. Moonlight, rather than tides or other lunar-regulated processes, is thought to be the proximate factor responsible for linking the night of spawning to the phase of the Moon. We compared patterns of gene expression among colonies of the broadcast spawning coral Acropora millepora at different phases of the lunar cycle, and when they were maintained under one of three experimentally simulated lunar lighting treatments: i) lunar lighting conditions matching those on the reef, or lunar patterns mimicking either ii) constant full Moon conditions, or iii) constant new Moon conditions. Normal lunar illumination was found to shift both the level and timing of clock gene transcription cycles between new and full moons, with the peak hour of expression for a number of genes occurring earlier in the evening under a new Moon when compared to a full Moon. When the normal lunar cycle is replaced with nighttime patterns equivalent to either a full Moon or a new Moon every evening, the normal monthlong changes in the level of expression are destroyed for most genes. In combination, these results indicate that daily changes in moonlight that occur over the lunar cycle are essential for maintaining normal lunar periodicity of clock gene transcription, and this may play a role in regulating spawn timing. These data also show that low levels of light pollution may have an impact on coral biological clocks.
Address Department of Biological Science, University of Calgary, 2500 University Drive NW, Calgary, Alberta T2N 1N4, Canada; pvize(at)ucalgary.ca
Corporate Author Thesis
Publisher Marine Biological Laboratory Place of Publication Editor
Language English Summary Language English Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number IDA @ john @ Serial 1476
Permanent link to this record
 

 
Author Gatford, K.L.; Kennaway, D.J.; Liu, H.; Schultz, C.G.; Wooldridge, A.L.; Kuchel, T.R.; Varcoe, T.J.
Title Simulated shift work during pregnancy does not impair progeny metabolic outcomes in sheep Type Journal Article
Year 2020 Publication The Journal of Physiology Abbreviated Journal J Physiol
Volume in press Issue Pages in press
Keywords (up) Animals; developmental programming; maternal; metabolism; progeny; sheep; shift work
Abstract KEY POINTS: Maternal shift work increases the risk of pregnancy complications, although its effects on progeny health after birth were not clear. We evaluated the impact of a simulated shift work protocol for one third, two thirds, or all of pregnancy on metabolic health of sheep progeny. Simulated shift work had no effect on growth, body size, body composition or glucose tolerance in pre-pubertal or young adult progeny. Glucose stimulated insulin secretion was reduced in adult female progeny and insulin sensitivity was increased in adult female singleton progeny. The results of this study does not support the hypothesis that maternal shift work exposure impairs metabolic health of progeny in altricial species ABSTRACT: Disrupted maternal circadian rhythms, such as those experienced during shift work, are associated with impaired progeny metabolism in rodents. The effects of disrupted maternal circadian rhythms on progeny metabolism have not been assessed in altricial, non-litter bearing species. We therefore assessed postnatal growth from birth to adulthood, and body composition, glucose tolerance, insulin secretion and insulin sensitivity in pre-pubertal and young adult progeny of sheep exposed to control conditions (CON: 10 males, 10 females) or to a simulated shift work (SSW) protocol for the first 1/3 (SSW0-7: 11 males, 9 females), the first 2/3 (SSW0-14: 8 males, 11 females), or all (SSW0-21: 8 males, 13 females) of pregnancy. Progeny growth did not differ between maternal treatments. In pre-pubertal progeny (12-14 weeks of age), adiposity, glucose tolerance and insulin secretion during an intravenous glucose tolerance test and insulin sensitivity did not differ between maternal treatments. Similarly, in young adult progeny (12-14 months of age), food intake, adiposity and glucose tolerance did not differ between maternal treatments. At this age, however, insulin secretion in response to a glucose bolus was 30% lower in female progeny in the combined SSW groups compared to control females (P = 0.031), and insulin sensitivity of SSW0-21 singleton females was 236% that of CON singleton female progeny (P = 0.025). At least in this model, maternal SSW does not impair progeny metabolic health, with some evidence of greater insulin action in female young adult progeny. This article is protected by copyright. All rights reserved.
Address Basil Hetzel Research Institute for Translational Health Research, Adelaide, South Australia, 5011, Australia
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0022-3751 ISBN Medium
Area Expedition Conference
Notes PMID:32918750 Approved no
Call Number GFZ @ kyba @ Serial 3135
Permanent link to this record
 

 
Author Russart, K.L.G.; Chbeir, S.A.; Nelson, R.J.; Magalang, U.J.
Title Light at night exacerbates metabolic dysfunction in a polygenic mouse model of type 2 diabetes mellitus Type Journal Article
Year 2019 Publication Life Sciences Abbreviated Journal Life Sci
Volume 231 Issue Pages 116574
Keywords (up) Animals; diabetes; human health; mouse models; Type 2 diabetes; Insulin Resistance
Abstract AIMS: Electric lighting is beneficial to modern society; however, it is becoming apparent that light at night (LAN) is not without biological consequences. Several studies have reported negative effects of LAN on health and behavior in humans and nonhuman animals. Exposure of non-diabetic mice to dim LAN impairs glucose tolerance, whereas a return to dark nights (LD) reverses this impairment. We predicted that exposure to LAN would exacerbate the metabolic abnormalities in TALLYHO/JngJ (TH) mice, a polygenic model of type 2 diabetes mellitus (T2DM). MATERIALS AND METHODS: We exposed 7-week old male TH mice to either LD or LAN for 8-10weeks in two separate experiments. After 8weeks of light treatment, we conducted intraperitoneal glucose tolerance testing (ipGTT) followed by intraperitoneal insulin tolerance testing (ipITT). In Experiment 1, all mice were returned to LD for 4weeks, and ipITT was repeated. KEY FINDINGS: The major results of this study are i) LAN exposure for 8weeks exacerbates glucose intolerance and insulin resistance ii) the effects of LAN on insulin resistance are reversed upon return to LD, iii) LAN exposure results in a greater increase in body weight compared to LD exposure, iv) LAN increases the incidence of mice developing overt T2DM, and v) LAN exposure decreases survival of mice with T2DM. SIGNIFICANCE: In conclusion, LAN exacerbated metabolic abnormalities in a polygenic mouse model of T2DM, and these effects were reversed upon return to dark nights. The applicability of these findings to humans with T2DM needs to be determined.
Address Department of Neuroscience, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA; Department of Internal Medicine, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0024-3205 ISBN Medium
Area Expedition Conference
Notes PMID:31207311 Approved no
Call Number GFZ @ kyba @ Serial 2549
Permanent link to this record