|   | 
Details
   web
Records
Author Kumar, J.; Malik, S.; Bhardwaj, S.K.; Rani, S.
Title Bright light at night alters the perception of daylength in Indian weaver bird (Ploceus philippinus) Type Journal Article
Year 2018 Publication Journal of Experimental Zoology. Part A, Ecological and Integrative Physiology Abbreviated Journal J Exp Zool A Ecol Integr Physiol
Volume 329 Issue 8-9 Pages 488-496
Keywords (up) Animals
Abstract The brighter nights have posed new challenges to the wild species by affecting their temporal physiology. The present study on Indian weaver bird (Ploceus philippinus) investigated if exposure to bright light at different phases of night affects their clock-mediated daily functions. Birds were placed individually in specially designed activity cages under short days and long nights (8L:16D; L = 100 lux, D < 0.1 lux) for approximately 3 weeks (19 days). Thereafter, they were divided into four groups (n = 6-9), and given approximately 2 lux light either for the entire night (ZT 08-24; zeitgeber time 0 = time of light on; pattern A) or for 4 hr (pattern B), placed in 16 hr night such that its onset coincides with the onset of night (early night group, ZT 08-12), its end with the end of night (late night group, ZT 20-24), or the night was interrupted in the middle (midnight group, ZT 14-18). The results showed that bright light in entire night induced early onset of day activity and fragmented rest at night, however, if given at different phases of night, it made the days longer by delaying end (early night group) or advancing onset of daily activity (late night group). It also suppressed the melatonin levels and increased body temperature. These results suggest that bright light at night alters the perception of daylength and affects the underlying physiology. The findings may be useful in adopting a strategy for use of night light without disturbing species fitness in their environment.
Address Department of Zoology, University of Lucknow, Lucknow, India
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2471-5638 ISBN Medium
Area Expedition Conference
Notes PMID:30043408 Approved no
Call Number GFZ @ kyba @ Serial 1971
Permanent link to this record
 

 
Author Firebaugh, A.; Haynes, K.J.
Title Light pollution may create demographic traps for nocturnal insects Type Journal Article
Year 2018 Publication Basic and Applied Ecology Abbreviated Journal Basic and Applied Ecology
Volume 34 Issue Pages 118-125
Keywords (up) Animals
Abstract Light pollution impacts both intra- and inter-specific interactions, such as interactions between mates and predator–prey interactions. In mobile organisms attracted to artificial lights, the effect of light pollution on these interactions may be intensified. If organisms are repelled by artificial lights, effects of light pollution on intra- and inter-specific interactions may be diminished as organisms move away. However, organisms repelled by artificial lights would likely lose suitable habitat as light pollution expands. Thus, we investigated how light pollution affects both net attraction or repulsion of organisms and effects on intra- and inter-specific interactions. In manipulative field studies using fireflies, we found that Photuris versicolor and Photinus pyralis fireflies were lured to artificial (LED) light at night and that both species were less likely to engage in courtship dialogues (bioluminescent flashing) in light-polluted field plots. Light pollution also lowered the mating success of P. pyralis. P. versicolor is known to prey upon P. pyralis by mimicking the flash patterns of P. pyralis, but we did not find an effect of light pollution on Photuris–Photinus predator–prey interactions. Our study suggests, that for some nocturnal insects, light-polluted areas may act as demographic traps, i.e., areas where immigration exceeds emigration and inhibition of courtship dialogues and mating reduces reproduction. Examining multiple factors affecting population growth in concert is needed to understand and mitigate impacts of light pollution on wildlife.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1439-1791 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number GFZ @ kyba @ Serial 1978
Permanent link to this record
 

 
Author Kumlien, L.
Title Observations on Bird Migration at Milwaukee Type Journal Article
Year 1888 Publication The Auk Abbreviated Journal The Auk
Volume 5 Issue 3 Pages 325-328
Keywords (up) Animals
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0004-8038 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number GFZ @ kyba @ Serial 2019
Permanent link to this record
 

 
Author Zeale, M.R.K.; Stone, E.L.; Zeale, E.; Browne, W.J.; Harris, S.; Jones, G.
Title Experimentally manipulating light spectra reveals the importance of dark corridors for commuting bats Type Journal Article
Year 2018 Publication Global Change Biology Abbreviated Journal Glob Chang Biol
Volume in press Issue Pages in press
Keywords (up) Animals
Abstract The rapid global spread of artificial light at night is causing unprecedented disruption to ecosystems. In otherwise dark environments, street lights restrict the use of major flight routes by some bats, including the threatened lesser horseshoe bat Rhinolophus hipposideros, and may disrupt foraging. Using radio tracking, we examined the response of individual female R. hipposideros to experimental street lights placed on hedgerows used as major flight routes. Hedgerows were illuminated on one side over four nights using lights with different emission spectra, while the opposite side of the hedge was not illuminated. Automated bat detectors were used to examine changes in overall bat activity by R. hipposideros and other bat species present. R. hipposideros activity reduced significantly under all light types, including red light, challenging a previously held assumption that red light is safe for bats. Despite this, R. hipposideros rapidly adapted to the presence of lights by switching their flight paths to the dark side of the hedgerow, enabling them to reach foraging sites without restriction. Red light had no effect on the activity of the other species present. Slow-flying Myotis spp. avoided orange, white and green light, while more agile Pipistrellus spp. were significantly more abundant at these light types compared to dark controls, most probably in response to accumulations of insect prey. No effect of any light type was found for Nyctalus or Eptesicus spp. Our findings demonstrate that caution must be used when promoting forms of lighting that are thought to be safe for wildlife before they are tested more widely. We argue that it is essential to preserve dark corridors free from light pollution to mitigate the impacts of artificial light at night on bat activity and movements. This article is protected by copyright. All rights reserved.
Address School of Biological Sciences, Life Sciences Building, University of Bristol, 24 Tyndall Avenue, Bristol, BS8 1TQ, UK
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1354-1013 ISBN Medium
Area Expedition Conference
Notes PMID:30288876 Approved no
Call Number GFZ @ kyba @ Serial 2021
Permanent link to this record
 

 
Author Taufique, S.T.; Prabhat, A.; Kumar, V.
Title Light at night affects hippocampal and nidopallial cytoarchitecture: Implication for impairment of brain function in diurnal corvids Type Journal Article
Year 2018 Publication Journal of Experimental Zoology. Part A, Ecological and Integrative Physiology Abbreviated Journal J Exp Zool A Ecol Integr Physiol
Volume in press Issue Pages in press
Keywords (up) Animals
Abstract Our previous studies have shown that light at night (LAN) impaired cognitive performance and affected neurogenesis and neurochemistry in the cognition-associated brain regions, particularly the hippocampus (HP) and lateral caudal nidopallium (NCL) of Indian house crows (Corvus splendens). Here, we examined the cytoarchitecture and mapped out the morphology of neurons and glia-neuron density in HP and NCL regions of crows that were first entrained to 12-hr light (LL): 12-hr darkness (LD) and then exposed to the light regime in which 12-hr darkness was either replaced by daytime light (i.e., constant light, LL) or by dim light (i.e., dim light at night, dLAN), with controls continued on LD 12:12. Compared with LD, there was a significant decrease in the soma size, suggesting reduced neuronal plasticity without affecting the neuronal density of both HP and NCL of crows under LL and dLAN conditions. In parallel, we found a reduced number of glia cells and, hence, decreased glia-neuron ratio positively correlated with soma size in both, HP and NCL regions. These results for the first time demonstrate LAN-induced negative effects on the brain cytoarchitecture of a diurnal species and give insight for possible influence on the brain health and functions in animals including humans that might be inadvertently exposed to LAN in an emerging night-illuminated urban environment.
Address Department of Zoology, University of Delhi, Delhi, India
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2471-5638 ISBN Medium
Area Expedition Conference
Notes PMID:30288960 Approved no
Call Number GFZ @ kyba @ Serial 2022
Permanent link to this record