|   | 
Details
   web
Records
Author Taufique, S.T.; Prabhat, A.; Kumar, V.
Title Light at night affects hippocampal and nidopallial cytoarchitecture: Implication for impairment of brain function in diurnal corvids Type Journal Article
Year 2018 Publication Journal of Experimental Zoology. Part A, Ecological and Integrative Physiology Abbreviated Journal J Exp Zool A Ecol Integr Physiol
Volume in press Issue Pages in press
Keywords (up) Animals
Abstract Our previous studies have shown that light at night (LAN) impaired cognitive performance and affected neurogenesis and neurochemistry in the cognition-associated brain regions, particularly the hippocampus (HP) and lateral caudal nidopallium (NCL) of Indian house crows (Corvus splendens). Here, we examined the cytoarchitecture and mapped out the morphology of neurons and glia-neuron density in HP and NCL regions of crows that were first entrained to 12-hr light (LL): 12-hr darkness (LD) and then exposed to the light regime in which 12-hr darkness was either replaced by daytime light (i.e., constant light, LL) or by dim light (i.e., dim light at night, dLAN), with controls continued on LD 12:12. Compared with LD, there was a significant decrease in the soma size, suggesting reduced neuronal plasticity without affecting the neuronal density of both HP and NCL of crows under LL and dLAN conditions. In parallel, we found a reduced number of glia cells and, hence, decreased glia-neuron ratio positively correlated with soma size in both, HP and NCL regions. These results for the first time demonstrate LAN-induced negative effects on the brain cytoarchitecture of a diurnal species and give insight for possible influence on the brain health and functions in animals including humans that might be inadvertently exposed to LAN in an emerging night-illuminated urban environment.
Address Department of Zoology, University of Delhi, Delhi, India
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2471-5638 ISBN Medium
Area Expedition Conference
Notes PMID:30288960 Approved no
Call Number GFZ @ kyba @ Serial 2022
Permanent link to this record
 

 
Author Willmott, N.J.; Henneken, J.; Selleck, C.J.; Jones, T.M.
Title Artificial light at night alters life history in a nocturnal orb-web spider Type Journal Article
Year 2018 Publication PeerJ Abbreviated Journal
Volume 6 Issue Pages e5599
Keywords (up) Animals
Abstract The prevalence of artificial light at night (ALAN) is increasing rapidly around the world. The potential physiological costs of this night lighting are often evident in life history shifts. We investigated the effects of chronic night-time exposure to ecologically relevant levels of LED lighting on the life history traits of the nocturnal Australian garden orb-web spider (Eriophora biapicata). We reared spiders under a 12-h day and either a 12-h natural darkness (∼0 lux) or a 12-h dim light (∼20 lux) night and assessed juvenile development, growth and mortality, and adult reproductive success and survival. We found that exposure to ALAN accelerated juvenile development, resulting in spiders progressing through fewer moults, and maturing earlier and at a smaller size. There was a significant increase in daily juvenile mortality for spiders reared under 20 lux, but the earlier maturation resulted in a comparable number of 0 lux and 20 lux spiders reaching maturity. Exposure to ALAN also considerably reduced the number of eggs produced by females, and this was largely associated with ALAN-induced reductions in body size. Despite previous observations of increased fitness for some orb-web spiders in urban areas and near night lighting, it appears that exposure to artificial night lighting may lead to considerable developmental costs. Future research will need to consider the detrimental effects of ALAN combined with foraging benefits when studying nocturnal insectivores that forage around artificial lights.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2167-8359 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number GFZ @ kyba @ Serial 2023
Permanent link to this record
 

 
Author Girard, M.B.; Kasumovic, M.M.; Elias, D.O.
Title The role of red coloration and song in peacock spider courtship: insights into complex signaling systems Type Journal Article
Year 2018 Publication Behavioral Ecology Abbreviated Journal
Volume in press Issue Pages
Keywords (up) Animals
Abstract Research on animal signaling enhances our understanding of links between sensory processing, decision making, behavior, and evolution. Studies of sexually-selected signals may be particularly informative as mate choice provides access to decision patterns in the way that courtship leads to an easily observable behavioral output in choosers, i.e., mating. Male peacock spiders have some of the most elaborate and varied courtship displays known among animals. Particularly striking to human observers is the diversity of red, orange, and yellow ornaments that males exhibit across the genus. The primary objective of our research was to investigate how these visual ornaments interact with vibratory songs to affect female mating behavior of one species, Maratus volans. Accordingly, we conducted mating trials under a series of experimentally manipulated vibratory and lighting conditions. Contrary to expectation, chromatic characteristics of longer wavelength ornaments are not driving female mate choice decisions, despite their extensive presence on male fans. Instead, our results suggest that contrast is important to females. Additionally, we found that vibratory signals were not necessary and did not increase mating rates. Our study demonstrates the intricacies inherent in complex signaling systems.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1045-2249 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number GFZ @ kyba @ Serial 2027
Permanent link to this record
 

 
Author Leise, T.L.; Goldberg, A.; Michael, J.; Montoya, G.; Solow, S.; Molyneux, P.; Vetrivelan, R.; Harrington, M.E.
Title Recurring circadian disruption alters circadian clock sensitivity to resetting Type Journal Article
Year 2018 Publication The European Journal of Neuroscience Abbreviated Journal Eur J Neurosci
Volume in press Issue Pages
Keywords (up) Animals
Abstract A single phase advance of the light:dark (LD) cycle can temporarily disrupt synchrony of neural circadian rhythms within the suprachiasmatic nucleus (SCN) and between the SCN and peripheral tissues. Compounding this, modern life can involve repeated disruptive light conditions. To model chronic disruption to the circadian system, we exposed male mice to more than a month of a 20 h light cycle (LD10:10), which mice typically cannot entrain to. Control animals were housed under LD12:12. We measured locomotor activity and body temperature rhythms in vivo, and rhythms of PER2::LUC bioluminescence in SCN and peripheral tissues ex vivo. Unexpectedly, we discovered strong effects of the time of dissection on circadian phase of PER2::LUC bioluminescent rhythms, which varied across tissues. White adipose tissue was strongly reset by dissection, while thymus phase appeared independent of dissection timing. Prior light exposure impacted the SCN, resulting in strong resetting of SCN phase by dissection for mice housed under LD10:10, and weak phase shifts by time of dissection in SCN from control LD12:12 mice. These findings suggest that exposure to circadian disruption may desynchronize SCN neurons, increasing network sensitivity to perturbations. We propose that tissues with a weakened circadian network, such as the SCN under disruptive light conditions, or with little to no coupling, e.g., some peripheral tissues, will show increased resetting effects. In particular, exposure to light at inconsistent circadian times on a recurring weekly basis disrupts circadian rhythms and alters sensitivity of the SCN neural pacemaker to dissection time. This article is protected by copyright. All rights reserved.
Address Neuroscience Program, Smith College, Northampton, MA, 01063, USA
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0953-816X ISBN Medium
Area Expedition Conference
Notes PMID:30269396 Approved no
Call Number GFZ @ kyba @ Serial 2036
Permanent link to this record
 

 
Author Pulgar, J.; Zeballos, D.; Vargas, J.; Aldana, M.; Manriquez, P.; Manriquez, K.; Quijon, P.A.; Widdicombe, S.; Anguita, C.; Quintanilla, D.; Duarte, C.
Title Endogenous cycles, activity patterns and energy expenditure of an intertidal fish is modified by artificial light pollution at night (ALAN) Type Journal Article
Year 2018 Publication Environmental Pollution (Barking, Essex : 1987) Abbreviated Journal Environ Pollut
Volume 244 Issue Pages 361-366
Keywords (up) Animals
Abstract The increase of global light emissions in recent years has highlighted the need for urgent evaluation of their impacts on the behaviour, ecology and physiology of organisms. Numerous species exhibit daily cycles or strong scototaxic behaviours that could potentially be influenced if natural lighting conditions or cycles are disrupted. Artificial Light Pollution at Night (ALAN) stands for situations where artificial light alters natural light-dark cycles, as well as light intensities and wavelengths. ALAN is increasingly recognized as a potential threat to biodiversity, mainly because a growing number of studies are demonstrating its influence on animal behaviour, migration, reproduction and biological interactions. Most of these studies have focused on terrestrial organisms and ecosystems with studies on the effects of ALAN on marine ecosystems being more occasional. However, with the increasing human use and development of the coastal zone, organisms that inhabit shallow coastal or intertidal systems could be at increasing risk from ALAN. In this study we measured the levels of artificial light intensity in the field and used these levels to conduct experimental trials to determine the impact of ALAN on an intertidal fish. Specifically, we measured ALAN effects on physiological performance (oxygen consumption) and behaviour (activity patterns) of “Baunco” the rockfish Girella laevifrons, one of the most abundant and ecologically important intertidal fish in the Southeastern Pacific littoral. Our results indicated that individuals exposed to ALAN exhibited increased oxygen consumption and activity when compared with control animals. Moreover, those fish exposed to ALAN stopped displaying the natural (circatidal and circadian) activity cycles that were observed in control fish throughout the experiment. These changes in physiological function and behaviour could have serious implications for the long-term sustainability of fish populations and indirect impacts on intertidal communities in areas affected by ALAN.
Address Departamento de Ecologia & Biodiversidad, Facultad de Ciencia de la Vida, Universidad Andres Bello, Chile; Center for the Study of Multiple-Drivers on Marine Socio-Ecological Systems (MUSELS), Universidad de Concepcion, Concepcion, Chile
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0269-7491 ISBN Medium
Area Expedition Conference
Notes PMID:30352350 Approved no
Call Number GFZ @ kyba @ Serial 2043
Permanent link to this record