toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Casasole, G.; Raap, T.; Costantini, D.; AbdElgawad, H.; Asard, H.; Pinxten, R.; Eens, M. url  doi
openurl 
  Title Neither artificial light at night, anthropogenic noise nor distance from roads are associated with oxidative status of nestlings in an urban population of songbirds Type Journal Article
  Year 2017 Publication Comparative Biochemistry and Physiology. Part A, Molecular & Integrative Physiology Abbreviated Journal Comp Biochem Physiol A Mol Integr Physiol  
  Volume 210 Issue Pages 14-21  
  Keywords (up) Animals  
  Abstract Increasing urbanization is responsible for road-related pollutants and causes an unprecedented increase in light and noise pollution, with potential detrimental effects for individual animals, communities and ecosystems. These stressors rarely act in isolation but studies dissecting the effects of these multiple stressors are lacking. Moreover, studies on urban stressors have mainly focused on adults, while exposure in early-life may be detrimental but is largely ignored. To fill this important knowledge gap, we studied if artificial light at night, anthropogenic noise and road-related pollution (using distance from roads as a proxy) explain variation in oxidative status in great tit nestlings (Parus major) in an urban population. Artificial light at night, anthropogenic noise and distance from roads were not associated with variation of the nine studied metrics of oxidative status (superoxide dismutase-SOD-, glutathione peroxidase-GPX, catalase-CAT-, non-enzymatic total antioxidant capacity-TAC-, reduced glutathione-GSH-, oxidized glutathione-GSSG-, ratio GSH/GSSG, protein carbonyls and thiobarbituric acid reactive substances-TBARS). Interestingly, for all oxidative status metrics, we found that there was more variation in oxidative status among individuals of the same nest compared to between different nests. We also showed an increase in protein carbonyls and a decrease of the ratio GSH/GSSG as the day advanced, and an increase of GPX when weather conditions deteriorated. Our study suggests that anthropogenic noise, artificial light at night and road-related pollution are not the most important sources of variation in oxidative status in great tit nestlings. It also highlights the importance of considering bleeding time and weather conditions in studies with free-living animals.  
  Address Department of Biology, Behavioural Ecology & Ecophysiology Group, University of Antwerp, Universiteitsplein 1, 2610 Wilrijk, Belgium  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1095-6433 ISBN Medium  
  Area Expedition Conference  
  Notes PMID:28499963 Approved no  
  Call Number GFZ @ kyba @ Serial 2457  
Permanent link to this record
 

 
Author Opperhuizen, A.-L.; Stenvers, D.J.; Jansen, R.D.; Foppen, E.; Fliers, E.; Kalsbeek, A. url  doi
openurl 
  Title Light at night acutely impairs glucose tolerance in a time-, intensity- and wavelength-dependent manner in rats Type Journal Article
  Year 2017 Publication Diabetologia Abbreviated Journal Diabetologia  
  Volume 60 Issue 7 Pages 1333-1343  
  Keywords (up) Animals  
  Abstract AIMS/HYPOTHESIS: Exposure to light at night (LAN) has increased dramatically in recent decades. Animal studies have shown that chronic dim LAN induced obesity and glucose intolerance. Furthermore, several studies in humans have demonstrated that chronic exposure to artificial LAN may have adverse health effects with an increased risk of metabolic disorders, including type 2 diabetes. It is well-known that acute exposure to LAN affects biological clock function, hormone secretion and the activity of the autonomic nervous system, but data on the effects of LAN on glucose homeostasis are lacking. This study aimed to investigate the acute effects of LAN on glucose metabolism. METHODS: Male Wistar rats were subjected to i.v. glucose or insulin tolerance tests while exposed to 2 h of LAN in the early or late dark phase. In subsequent experiments, different light intensities and wavelengths were used. RESULTS: LAN exposure early in the dark phase at ZT15 caused increased glucose responses during the first 20 min after glucose infusion (p < 0.001), whereas LAN exposure at the end of the dark phase, at ZT21, caused increased insulin responses during the first 10 min (p < 0.01), indicating that LAN immediately induces glucose intolerance in rats. Subsequent experiments demonstrated that the effect of LAN was both intensity- and wavelength-dependent. White light of 50 and 150 lx induced greater glucose responses than 5 and 20 lx, whereas all intensities other than 5 lx reduced locomotor activity. Green light induced glucose intolerance, but red and blue light did not, suggesting the involvement of a specific retina-brain pathway. CONCLUSIONS/INTERPRETATION: Together, these data show that exposure to LAN has acute adverse effects on glucose metabolism in a time-, intensity- and wavelength-dependent manner.  
  Address Department of Endocrinology and Metabolism, Academic Medical Center (AMC) University of Amsterdam, Amsterdam, the Netherlands  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0012-186X ISBN Medium  
  Area Expedition Conference  
  Notes PMID:28374068; PMCID:PMC5487588 Approved no  
  Call Number GFZ @ kyba @ Serial 2459  
Permanent link to this record
 

 
Author Welbers, A.A.M.H.; van Dis, N.E.; Kolvoort, A.M.; Ouyang, J.; Visser, M.E.; Spoelstra, K.; Dominoni, D.M. url  doi
openurl 
  Title Artificial Light at Night Reduces Daily Energy Expenditure in Breeding Great Tits (Parus major) Type Journal Article
  Year 2017 Publication Frontiers in Ecology and Evolution Abbreviated Journal Front. Ecol. Evol.  
  Volume 5 Issue Pages  
  Keywords (up) Animals  
  Abstract The ecological impact of artificial light at night (ALAN) is an increasingly recognized process that accompanies expanding urbanization. Yet, we have limited knowledge on the impact of ALAN on wild species, and on the potential to mitigate any negative effects by using different light sources and colors. In birds, effects of ALAN on activity levels are reported for several species and, hence, their daily energy expenditure (DEE) may be affected. DEE is a potent mediator of life-history trade-offs and fitness and thus an important aspect to consider when examining the potential long-term ecological effects of ALAN. Previous work has suggested that birds exposed to ALAN show higher levels of provisioning and nocturnal activity, suggesting that white ALAN increases DEE. Other factors regulating DEE, such as provisioning behavior and food availability, might also respond to ALAN and thus indirectly affect DEE. We tested the hypothesis that ALAN increases DEE using an experimental setup where four previously unlit transects were illuminated with either white, green, or red LED light, or left dark as a control treatment. This setup was replicated in eight locations across the Netherlands. We measured DEE of our focal species, the great tit (Parus major), using a novel doubly labeled water technique that uses breath rather than blood samples. Contrary to our expectations, birds feeding their offspring under white and green ALAN showed lower DEE compared to birds in the control dark treatment. Differences in chick provisioning activity did not explain this result, as neither visit rates nor daily activity timing was affected by light treatment. However, food availability under white and green light was much higher compared to red light and the dark control. This difference strongly suggests that the lower DEE under white and green ALAN sites is a consequence of higher food availability in these treatments. This result shows that there can be positive, indirect effects of ALAN for breeding song birds which may balance against the negative direct effects shown in previous studies.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2296-701X ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number GFZ @ kyba @ Serial 2460  
Permanent link to this record
 

 
Author Zhang, Z.; Wang, H.-J.; Wang, D.-R.; Qu, W.-M.; Huang, Z.-L. url  doi
openurl 
  Title Red light at intensities above 10 lx alters sleep-wake behavior in mice Type Journal Article
  Year 2017 Publication Light, Science & Applications Abbreviated Journal Light Sci Appl  
  Volume 6 Issue 5 Pages e16231  
  Keywords (up) Animals  
  Abstract Sleep is regulated by two mechanisms: the homeostatic process and the circadian clock. Light affects sleep and alertness by entraining the circadian clock, and acutely inducing sleep/alertness, in a manner mediated by intrinsically photosensitive retinal ganglion cells. Because intrinsically photosensitive retinal ganglion cells are believed to be minimally sensitive to red light, which is widely used for illumination to reduce the photic disturbance to nocturnal animals during the dark phase. However, the appropriate intensity of the red light is unknown. In the present study, we recorded electroencephalograms and electromyograms of freely moving mice to investigate the effects of red light emitted by light-emitting diodes at different intensities and for different durations on the sleep-wake behavior of mice. White light was used as a control. Unexpectedly, red light exerted potent sleep-inducing effects and changed the sleep architecture in terms of the duration and number of sleep episodes, the stage transition, and the EEG power density when the intensity was >20 lx. Subsequently, we lowered the light intensity and demonstrated that red light at or below 10 lx did not affect sleep-wake behavior. White light markedly induced sleep and disrupted sleep architecture even at an intensity as low as 10 lx. Our findings highlight the importance of limiting the intensity of red light (10 lx) to avoid optical influence in nocturnal behavioral experiments, particularly in the field of sleep and circadian research.  
  Address Institutes of Brain Science and Collaborative Innovation Center for Brain Science, Department of Pharmacology, School of Basic Medical Sciences, State Key Laboratory of Medical Neurobiology and Shanghai Key Laboratory of Clinical Geriatric Medicine, Shanghai Medical College, Fudan University, Shanghai 200032, China  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2047-7538 ISBN Medium  
  Area Expedition Conference  
  Notes PMID:30167247; PMCID:PMC6062196 Approved no  
  Call Number GFZ @ kyba @ Serial 2463  
Permanent link to this record
 

 
Author Weiss, C.M. openurl 
  Title The effect of illumination and stage of tide on the attachment of barnacle cyprids Type Journal Article
  Year 1947 Publication The Biological Bulletin Abbreviated Journal  
  Volume 93 Issue 3 Pages 240-249  
  Keywords (up) animals  
  Abstract 1. The cyprid larvae of Balanus improvisus were found to settle in a diurnal rhythm with maximum numbers attaching during daylight hours.

2. No consistent pattern of vertical distribution of the cyprids was found.

3. The normal diurnal cycle in rate of attachment of barnacle cyprids was nullified by the use of artificial illumination over the collecting surfaces at night.

4. The magnitude of the cyprid collection on the artificially illuminated surfaces was equal to the collection on the sun-illuminated surfaces in daylight.

5. The intensity of artificial light necessary to produce large cyprid attachments at night was of an order as low as 1 footcandle at the water surface.

6. No correlation was found between the quantity of artificial light at night and the numbers of cyprids attached.

7. The highest rate of cyprid attachment relative to the phase of the tide was found to occur when the waters of upper Biscayne Bay were sampled at the collecting station. This body of water reached the sampling station at low tide and was characterized by a high cyprid population.
 
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number GFZ @ kyba @ Serial 2464  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: