toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Malek, I.; Haim, A. url  doi
openurl 
  Title Bright artificial light-at-night is associated with increased body mass, poor reproductive success, and compromised disease tolerance in Australian budgerigars (Melopsittacus undulatus) Type Journal Article
  Year 2019 Publication Integrative Zoology Abbreviated Journal Integr Zool  
  Volume 14 Issue 6 Pages 589-603  
  Keywords (up) Animals; Birds; Australian budgerigars; Melopsittacus undulatus; Photoperiod; captive birds  
  Abstract Artificial light-at-night (ALAN) can cause circadian disruption and result in adverse behavioral and ecological effects in free-living birds, but studies on captive pet birds as companion animals have been infrequent. We studied the effects of exposure to bright ALAN on body mass, melatonin sulfate levels, reproduction, and disease severity in Australian budgerigars (Melopsittacus undulatus) kept in captivity. During the experiment, birds were kept under outdoor temperature, humidity, and natural photoperiod from September to December. 48 birds were equally split into four groups (6 mating pairs each) and concurrently exposed to ALAN of 200 lux with different duration (0, 30, 60, and 90 min). Monthly observations were recorded for all dependent parameters. ALAN exposure increased mass gain and suppressed melatonin levels in a dose-dependent manner, especially during December. In addition, ALAN exposure in all duration groups decreased egg production and reduced hatchability from 61+/-14% in the ALAN-unexposed control group to 0% in the ALAN-exposed birds. Disease severity was also found to increase in line with the duration of ALAN exposure. In captive M. undulatus, ALAN exposure was demonstrated to affect photoperiodic regulation with subsequent excess mass gain, reproduction impairment, and increased susceptibility to infections plausibly through duration dose-dependent suppression of melatonin. To the best of our knowledge, this is the first study to demonstrate a possible association between acute bright ALAN of increasing duration and both natural development of infections as well as reproductive cessation in captive birds. Our findings could be used to improve breeding conditions of captive birds.  
  Address The Israeli Center for Interdisciplinary Research in Chronobiology, University of Haifa 31905, Israel  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1749-4869 ISBN Medium  
  Area Expedition Conference  
  Notes PMID:31149779 Approved no  
  Call Number GFZ @ kyba @ Serial 2512  
Permanent link to this record
 

 
Author Ouyang, J.Q; Maaike de Jong, M.H.; Visser, M.E.; van Grunsven, R.H.A.; Ouyang, J.Q url  openurl
  Title Stressful colours: corticosterone concentrations in a free-living songbird vary with the spectral composition of experimental illumination Type Journal Article
  Year 2015 Publication Biology Letters Abbreviated Journal Biol. Lett.  
  Volume 11 Issue Pages 20150517  
  Keywords (up) Animals; birds; corticosterone; stress; Parus major; great tit; artificial light; light spectra  
  Abstract Organisms have evolved under natural daily light/dark cycles for millions of years. These cycles have been disturbed as night-time darkness is increasingly replaced by artificial illumination. Investigating the physiological consequences of free-living organisms in artificially lit environments is crucial to determine whether nocturnal lighting disrupts circadian rhythms, changes behaviour, reduces fitness and ultimately affects population numbers. We make use of a unique, large-scale network of replicated field sites which were experimentally illuminated at night using lampposts emanating either red, green, white or no light to test effect on stress hormone concentrations (corticosterone) in a songbird, the great tit (Parus major). Adults nesting in white-light transects had higher corticosterone concentrations than in the other treatments. We also found a significant interaction between distance to the closest lamppost and treatment type: individuals in red light had higher corticosterone levels when they nested closer to the lamppost than individuals nesting farther away, a decline not observed in the green or dark treatment. Individuals with high corticosterone levels had fewer fledglings, irrespective of treatment. These results show that artificial light can induce changes in individual hormonal phenotype. As these effects vary considerably with light spectrum, it opens the possibility to mitigate these effects by selecting street lighting of specific spectra.  
  Address Department of Animal Ecology, The Netherlands Institute of Ecology (NIOO-KNAW), Wageningen, The Netherlands; j.ouyang(at)nioo.knaw.nl  
  Corporate Author Thesis  
  Publisher Royal Society Place of Publication Editor  
  Language English Summary Language English Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number IDA @ john @ Serial 1248  
Permanent link to this record
 

 
Author Grunst, M.L.; Raap, T.; Grunst, A.S.; Pinxten, R.; Eens, M. url  doi
openurl 
  Title Artificial light at night does not affect telomere shortening in a developing free-living songbird: A field experiment Type Journal Article
  Year 2019 Publication Science of The Total Environment Abbreviated Journal Science of The Total Environment  
  Volume 662 Issue Pages 266-275  
  Keywords (up) Animals; birds; Great tit; Parus major; telomere shortening; Stress  
  Abstract Artificial light at night (ALAN) is an increasingly pervasive anthropogenic disturbance factor. ALAN can seriously disrupt physiological systems that follow circadian rhythms, and may be particularly influential early in life, when developmental trajectories are sensitive to stressful conditions. Using great tits (Parus major) as a model species, we experimentally examined how ALAN affects physiological stress in developing nestlings. We used a repeated-measure design to assess effects of ALAN on telomere shortening, body mass, tarsus length and body condition. Telomeres are repetitive nucleotide sequences that protect chromosomes from damage and malfunction. Early-life telomere shortening can be accelerated by environmental stressors, and has been linked to later-life declines in survival and reproduction. We also assayed nitric oxide, as an additional metric of physiological stress, and determined fledging success. Change in body condition between day 8 and 15 differed according to treatment. Nestlings exposed to ALAN displayed a trend towards a decline in condition, whereas control nestlings displayed a trend towards increased condition. This pattern was driven by a greater increase in tarsus length relative to mass in nestlings exposed to ALAN. Nestlings in poorer condition and nestlings that were smaller than their nest mates had shorter telomeres. However, exposure to ALAN was unrelated to telomere shortening, and also had no effect on nitric oxide concentrations or fledging success. Thus, exposure to ALAN may not have led to sufficient stress to induce telomere shortening. Indeed, plasticity in other physiological systems could allow nestlings to maintain telomere length despite moderate stress. Alternatively, the cascade of physiological and behavioral responses associated with light exposure may have no net effect on telomere dynamics.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0048-9697 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number GFZ @ kyba @ Serial 2161  
Permanent link to this record
 

 
Author Zhang, X.; Yang, W.; Liang, W.; Wang, Y.; Zhang, S. url  doi
openurl 
  Title Intensity dependent disruptive effects of light at night on activation of the HPG axis of tree sparrows (Passer montanus) Type Journal Article
  Year 2019 Publication Environmental Pollution Abbreviated Journal Environmental Pollution  
  Volume 249 Issue Pages 904-909  
  Keywords (up) Animals; Birds; hypothalamus-pituitary-gonadal axis; HPG axis; wild tree sparrow; Passer montanus; endocrine  
  Abstract Artificial light at night (ALAN) has become increasingly recognized as a disruptor of the reproductive endocrine process and behavior of wild birds. However, there is no evidence that ALAN directly disrupt the hypothalamus-pituitary-gonadal (HPG) axis, and no information on the effects of different ALAN intensities on birds. We experimentally tested whether ALAN affects reproductive endocrine activation in the HPG axis of birds, and whether this effect is related to the intensity of ALAN, in wild tree sparrows (Passer montanus). Forty-eight adult female birds were randomly assigned to four groups. They were first exposed to a short light photoperiod (8 h light and 16 h dark per day) for 20 days, then exposed to a long light photoperiod (16 h light and 8 h dark per day) to initiate the reproductive endocrine process. During these two kinds of photoperiod treatments, the four groups of birds were exposed to 0, 85, 150, and 300 lux light in the dark phase (night) respectively. The expression of the reproductive endocrine activation related TSH-β, Dio2 and GnRH-I gene was significantly higher in birds exposed to 85 lux light at night, and significantly lower in birds exposed to 150 and 300 lux, relative to the 0 lux control. The birds exposed to 85 lux had higher peak values of plasma LH and estradiol concentration and reached the peak earlier than birds exposed to 0, 150, or 300 lux did. The lower gene expression of birds exposed to 150 and 300 lux reduced their peak LH and estradiol values, but did not delay the timing of these peaks compared to the control group. These results reveal that low intensity ALAN accelerates the activation of the reproductive endocrine process in the HPG axis, whereas high intensity ALAN retards it.  
  Address College of Life and Environment Science, Minzu University of China, Beijing, 100081, China  
  Corporate Author Thesis  
  Publisher Elsevier Place of Publication Editor  
  Language English Summary Language English Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0269-7491 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number GFZ @ kyba @ Serial 2281  
Permanent link to this record
 

 
Author Saini, C.; Hutton, P.; Gao, S.; Simpson, R.K.; Giraudeau, M.; Sepp, T.; Webb, E.; McGraw, K.J. url  doi
openurl 
  Title Exposure to artificial light at night increases innate immune activity during development in a precocial bird Type Journal Article
  Year 2019 Publication Comparative Biochemistry and Physiology. Part A, Molecular & Integrative Physiology Abbreviated Journal Comp Biochem Physiol A Mol Integr Physiol  
  Volume 233 Issue Pages 84-88  
  Keywords (up) Animals; Birds; king quail; Excalfactoria chinensis; immunity  
  Abstract Humans have greatly altered Earth's night-time photic environment via the production of artificial light at night (ALAN; e.g. street lights, car traffic, billboards, lit buildings). ALAN is a problem of growing importance because it may significantly disrupt the seasonal and daily physiological rhythms and behaviors of animals. There has been considerable interest in the impacts of ALAN on health of humans and other animals, but most of this work has centered on adults and we know comparatively little about effects on young animals. We exposed 3-week-old king quail (Excalfactoria chinensis) to a constant overnight blue-light regime for 6 weeks and assessed weekly bactericidal activity of plasma against Escherichia coli – a commonly employed metric of innate immunity in animals. We found that chronic ALAN exposure significantly increased bactericidal activity and that this elevation in immune performance manifested at different developmental time points in males and females. Whether this short-term increase in immune activity can be extended to wild animals, and whether ALAN-mediated increases in immune activity have positive or negative fitness effects are unknown and will provide interesting avenues for future studies.  
  Address School of Life Sciences, Arizona State University, Tempe, AZ 85287, United States of America. Electronic address: Kevin.McGraw@asu.edu  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1095-6433 ISBN Medium  
  Area Expedition Conference  
  Notes PMID:30974186 Approved no  
  Call Number GFZ @ kyba @ Serial 2291  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: