toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Straka,T. M., Wolf, M., Gras, P., Buchholz, S., & Voigt, C. C. doi  openurl
  Title Tree Cover Mediates the Effect of Artificial Light on Urban Bats Type Journal Article
  Year 2019 Publication Frontiers in Ecology and Evolution Abbreviated Journal  
  Volume 7 Issue Pages 91  
  Keywords (up) Animals; ALAN; bats; canopy cover; chiroptera; light-emitting diodes; LED; trees; Ultraviolet; urban  
  Abstract With urban areas growing worldwide, so does artificial light at night (ALAN) which negatively affects many nocturnal animals, including bats. The response of bats to ALAN ranges from some opportunistic species taking advantage of insect aggregations around street lamps, particularly those emitting ultraviolet (UV) light, to others avoiding lit areas at all. Tree cover has been suggested to mitigate the negative effects of ALAN on bats by shielding areas against light scatter. Here, we investigated the effect of tree cover on the relationship between ALAN and bats in Berlin, Germany. In particular, we asked if this interaction varies with the UV light spectrum of street lamps and also across urban bat species. We expected trees next to street lamps to block ALAN, making the adjacent habitat more suitable for all species, irrespective of the wavelength spectrum of the light source. Additionally, we expected UV emitting lights next to trees to attract insects and thus, opportunistic bats. In summer 2017, we recorded bat activity at 22 green open spaces in Berlin using automated ultrasonic detectors. We analyzed bat activity patterns and landscape variables (number of street lamps with and without UV light emission, an estimate of light pollution, and tree cover density around each recording site within different spatial scales) using generalized linear mixed-effects models with a negative binomial distribution. We found a species-specific response of bats to street lamps with and without UV light, providing a more detailed picture of ALAN impacts than simply total light radiance. Moreover, we found that dense tree cover dampened the negative effect of street lamps without UV for open-space foraging bats of the genera Nyctalus, Eptesicus, and Vespertilio, yet it amplified the already existing negative or positive effect of street lamps with or without UV on Pipistrellus pipistrellus, P. pygmaeus, and Myotis spp. Our study underpins the importance of minimizing artificial light at night close to vegetation, particularly for bats adapted to spatial complexity in the environment (i.e., clutter-adapted species), and to increase dense vegetation in urban landscape to provide, besides roosting opportunities, protection against ALAN for open-space foraging bats in city landscapes.  
  Address Department of Evolutionary Ecology, Leibniz Institute for Zoo and Wildlife Research, Berlin, Germany  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number IDA @ intern @ Serial 2302  
Permanent link to this record
 

 
Author Bumgarner, J.R.; Walker, W.H. 2nd; Liu, J.A.; Walton, J.C.; Nelson, R.J. url  doi
openurl 
  Title Dim light at night exposure induces cold hyperalgesia and mechanical allodynia in male mice Type Journal Article
  Year 2020 Publication Neuroscience Abbreviated Journal Neuroscience  
  Volume in press Issue Pages  
  Keywords (up) Animals; Allodynia; Hyperalgesia; Light at Night; Neuroinflammation; Opioid; Pain  
  Abstract The growing presence of artificial lighting across the globe presents a number of challenges to human and ecological health despite its societal benefits. Exposure to artificial light at night, a seemingly innocuous aspect of modern life, disrupts behavior and physiological functions. Specifically, light at night induces neuroinflammation, which is implicated in neuropathic and nociceptive pain states, including hyperalgesia and allodynia. Because of its influence on neuroinflammation, we investigated the effects of dim light at night exposure on pain responsiveness in male mice. In this study, mice exposed to four days of dim (5 lux) light at night exhibited cold hyperalgesia. Further, after 28 days of exposure, mice exhibited both cold hyperalgesia and mechanical allodynia. No heat/hot hyperalgesia was observed in this experiment. Altered nociception in mice exposed to dim light at night was concurrent with upregulated interleukin-6 and nerve growth factor mRNA expression in the medulla and elevated mu-opioid receptor mRNA expression in the periaqueductal gray region of the brain. The current results support the relationship between disrupted circadian rhythms and altered pain sensitivity. In summary, we observed that dim light at night induces cold hyperalgesia and mechanical allodynia, potentially through elevated central neuroinflammation and dysregulation of the endogenous opioid system.  
  Address Department of Neuroscience, Rockefeller Neuroscience Institute, West Virginia University, Morgantown, WV, 26506 United States  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0306-4522 ISBN Medium  
  Area Expedition Conference  
  Notes PMID:32201267 Approved no  
  Call Number GFZ @ kyba @ Serial 2864  
Permanent link to this record
 

 
Author Cope, K.L.; Schook, M.W.; Benard, M.F. url  doi
openurl 
  Title Exposure to artificial light at night during the larval stage has delayed effects on juvenile corticosterone concentration in American toads, Anaxyrus americanus Type Journal Article
  Year 2020 Publication General and Comparative Endocrinology Abbreviated Journal Gen Comp Endocrinol  
  Volume in press Issue Pages 113508  
  Keywords (up) Animals; amphibian; anthropogenic light; carry-over effects; environmental stressor; glucocorticoid; predation  
  Abstract Artificial Light At Night (ALAN) is an environmental stressor that can disrupt individual physiology and ecological interactions. Hormones such as corticosterone are often responsible for mediating an organism's response to environmental stressors. We investigated whether ALAN was associated with a corticosterone response and whether it exacerbated the effects of another common stressor, predation. We tested for consumptive, non-consumptive, and physiological effects of ALAN and predator presence (dragonfly larvae) on a widespread amphibian, the American toad (Anaxyrus americanus). We found predators had consumptive (decreased survival) and non-consumptive (decreased growth) effects on larval toads. ALAN did not affect larval toads nor did it interact with the predator treatment to increase larval toad predation. Despite the consumptive and non-consumptive effects of predators, neither predators nor ALAN affected corticosterone concentration in the larval and metamorph life-stages. In contrast to studies in other organisms, we did not find any evidence that suggested ALAN alters predator-prey interactions between dragonfly larvae and toads. However, there was an inverse relationship between corticosterone and survival that was exacerbated by exposure to ALAN when predators were absent. Additionally, larval-stage exposure to ALAN increased corticosterone concentration in juvenile toads. Our results suggest the physiological effects of ALAN may not be demonstrated until later life-stages.  
  Address Department of Biology, Case Western Reserve University, 10900 Euclid Ave., Cleveland, OH 44016, USA. Electronic address: mfb38@case.edu  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0016-6480 ISBN Medium  
  Area Expedition Conference  
  Notes PMID:32442544 Approved no  
  Call Number GFZ @ kyba @ Serial 2931  
Permanent link to this record
 

 
Author Gaston, M.S.; Pereyra, L.C.; Vaira, M. url  doi
openurl 
  Title Artificial light at night and captivity induces differential effects on leukocyte profile, body condition, and erythrocyte size of a diurnal toad Type Journal Article
  Year 2018 Publication Journal of Experimental Zoology. Part A, Ecological and Integrative Physiology Abbreviated Journal J Exp Zool A Ecol Integr Physiol  
  Volume in press Issue Pages  
  Keywords (up) Animals; Amphibians; Toads  
  Abstract Light pollution or artificial lighting at night (ALAN) is an emerging threat to biodiversity that can disrupt physiological processes and behaviors. Because ALAN stressful effects are little studied in diurnal amphibian species, we investigated if chronic ALAN exposure affects the leukocyte profile, body condition, and blood cell sizes of a diurnal toad. We hand-captured male toads of Melanophryniscus rubriventris in Angosto de Jaire (Jujuy, Argentina). We prepared blood smears from three groups of toads: “field” (toads processed in the field immediately after capture), “natural light” (toads kept in the laboratory under captivity with natural photoperiod), and “constant light” (toads kept in the laboratory under captivity with constant photoperiod/ALAN). We significantly observed higher neutrophil proportions and neutrophils to lymphocytes ratio in toads under constant light treatment. In addition, we observed significantly better body condition and higher erythrocyte size in field toads compared with captive toads. In summary, ALAN can trigger a leukocyte response to stress in males of the diurnal toad M. rubriventris. In addition, captivity can affect the body condition and erythrocyte size of these toads.  
  Address Instituto de Ecorregiones Andinas (INECOA), Universidad Nacional de Jujuy, CONICET, San Salvador de Jujuy, Argentina  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2471-5638 ISBN Medium  
  Area Expedition Conference  
  Notes PMID:30320969 Approved no  
  Call Number GFZ @ kyba @ Serial 2049  
Permanent link to this record
 

 
Author Sharma, A.; Goyal, R. url  doi
openurl 
  Title Long-term exposure to constant light induces dementia, oxidative stress and promotes aggregation of sub-pathological Abeta42 in Wistar rats Type Journal Article
  Year 2020 Publication Pharmacology, Biochemistry, and Behavior Abbreviated Journal Pharmacol Biochem Behav  
  Volume in press Issue Pages 172892  
  Keywords (up) Animals; Amyloid beta; Behavior, fluoxetine, rifampicin; Oxidative stress  
  Abstract Constant exposure to light is prevalent in modern society where light noise, shift work, and jet lag is common. Constant light exposure disrupts circadian rhythm, induces stress and thus influences memory performance. We subjected adult male Wistar rats to a two-month exposure to constant light (LL), constant dark or normal light-dark cycles. Significant cognitive impairment and oxidative stress were observed in LL rats without a significant elevation in soluble Abeta1-42 levels. Next, we examined whether long-term exposure to constant light may accelerate dementia in a sub-pathological Abeta model of rats. Normal control rats received ACSF, AD rats received 440pmol, and sub-pathological Abeta rats (Abeta(s)) received 220pmol of human Abeta42 peptide in a single unilateral ICV administration. Sub-pathological Abeta rats exposed to constant light (LL+Abeta(s)) show significant memory deficits and oxidative damage, although not significantly different from LL rats. Additionally, constant light promoted aggregation of exogenous Abeta42 in LL+Abeta(s) rats shown by the presence of congophilic plaques. Furthermore, chronic fluoxetine treatment (5mg/kg/day) rescued rats from the behavioral deficits, oxidative damage and amyloid aggregation. Whereas, rifampicin treatment (20mg/kg/day) did not reverse the behavioral deficits or oxidative stress but rescued rats from amyloid plaque formation. It was concluded that constant light for two months induces behavioral deficits, oxidative stress, and accelerates aggregation of sub-pathological concentrations of human-Abeta42 peptides in Wistar rats, which is reversed by daily fluoxetine administration.  
  Address Neuropharmacology Laboratory, School of Pharmaceutical Sciences, Shoolini University, Solan 173 212, Himachal Pradesh, India. Electronic address: rohitgoyal@shooliniuniversity.com  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0091-3057 ISBN Medium  
  Area Expedition Conference  
  Notes PMID:32142744 Approved no  
  Call Number GFZ @ kyba @ Serial 2841  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: