toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Mège, P.; Ödeen, A.; Théry, M.; Picard, D.; Secondi, J. url  doi
openurl 
  Title Partial Opsin Sequences Suggest UV-Sensitive Vision is Widespread in Caudata Type Journal Article
  Year 2015 Publication Evolutionary Biology Abbreviated Journal Evol. Biol.  
  Volume Issue Pages 1-10  
  Keywords Animals; Caudata; amphibians; ultraviolet; ultraviolet vision; opsin; photobiology; SWS1; Paralog gene; Tuning site; Nocturnal species; Sliding window; Ka/Ks  
  Abstract Ultraviolet (UV) vision exists in several animal groups. Intuitively, one would expect this trait to be favoured in species living in bright environments, where UV light is the most present. However, UV sensitivity, as deduced from sequences of UV photoreceptors and/or ocular media transmittance, is also present in nocturnal species, raising questions about the selective pressure maintaining this perceptual ability. Amphibians are among the most nocturnal vertebrates but their visual ecology remains poorly understood relative to other groups. Perhaps because many of these species breed in environments that filter out a large part of UV radiation, physiological and behavioural studies of UV sensitivity in this group are scarce. We investigated the extent of UV vision in Caudata, the order of amphibians with the most nocturnal habits. We could recover sequences of the UV sensitive SWS1 opsin in 40 out of 58 species, belonging to 6 families. In all of these species, the evidence suggests the presence of functional SWS1 opsins under purifying selection, potentially allowing UV vision. Interestingly, most species whose opsin genes failed to amplify exhibited particular ecological features that could drive the loss of UV vision. This likely wide distribution of functional UV photoreceptors in Caudata sheds a new light on the visual ecology of amphibians and questions the function of UV vision in nocturnal animal species.  
  Address GECCO, Université d’Angers, 2 Bd Lavoisier, 49045, Angers, France; pascal.mege(at)gmail.com  
  Corporate Author Thesis  
  Publisher Springer Place of Publication Editor  
  Language (down) English Summary Language English Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0071-3260 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number IDA @ john @ Serial 1299  
Permanent link to this record
 

 
Author Escofet, J.; Bará, S. url  doi
openurl 
  Title Reducing the circadian input from self-luminous devices using hardware filters and software applications Type Journal Article
  Year 2015 Publication Lighting Research and Technology Abbreviated Journal Lighting Res. & Tech.  
  Volume 49 Issue 4 Pages 481-496  
  Keywords Lighting; devices; circadian disruption; screens; self-luminous  
  Abstract The widespread use of self-luminous devices at nighttime (cell-phones, computers, and tablets) raises some reasonable concerns regarding their effects on human physiology. Light at night is a known circadian disruptor, particularly at short visible wavelengths, and it seems advisable to have practical tools for tailoring the spectral radiance of these displays. We analyse two possible strategies to achieve this goal, using hardware filters or software applications. Overall, software applications seem to offer, at the present time, the best trade-offs for controlling the light spectra emitted by existing devices. We submit that such tools should be included as a standard feature on any self-luminous device and that their default settings should be established according to the best available knowledge on the circadian effects of light.  
  Address Departament d'Ã’ptica i Optometria, Universitat Politècnica de Catalunya, Terrassa, Catalunya, Spain; salva.bara(at)usc.es  
  Corporate Author Thesis  
  Publisher SAGE Place of Publication Editor  
  Language (down) English Summary Language English Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1477-1535 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number IDA @ john @ Serial 1315  
Permanent link to this record
 

 
Author Rodríguez Martín, A.; Chiaradia, A.; Wasiak, P.; Renwick, L.; Dann, P. url  doi
openurl 
  Title Waddling on the Dark Side: Ambient Light Affects Attendance Behavior of Little Penguins Type Journal Article
  Year 2016 Publication Journal of Biological Rhythms Abbreviated Journal J Biol Rhythms  
  Volume 0748730415626010 Issue Pages  
  Keywords Animals; birds; penguins; attendance; little penguin; Eudyptula minor; Phillip Island; Australia; photobiology; seabirds  
  Abstract Visible light on Earth largely comes from the sun, including light reflected from the moon. Predation risk is strongly determined by light conditions, and some animals are nocturnal to reduce predation. Artificial lights and its consequent light pollution may disrupt this natural behavior. Here, we used 13 years of attendance data to study the effects of sun, moon, and artificial light on the attendance pattern of a nocturnal seabird, the little penguin Eudyptula minor at Phillip Island, Australia. The little penguin is the smallest and the only penguin species whose activity on land is strictly nocturnal. Automated monitoring systems recorded individually marked penguins every time they arrived (after sunset) at or departed (before sunrise) from 2 colonies under different lighting conditions: natural night skylight and artificial lights (around 3 lux) used to enhance penguin viewing for ecotourism around sunset. Sunlight had a strong effect on attendance as penguins arrived on average around 81 min after sunset and departed around 92 min before sunrise. The effect of moonlight was also strong, varying according to moon phase. Fewer penguins came ashore during full moon nights. Moon phase effect was stronger on departure than arrival times. Thus, during nights between full moon and last quarter, arrival times (after sunset) were delayed, even though moonlight levels were low, while departure times (before sunrise) were earlier, coinciding with high moonlight levels. Cyclic patterns of moon effect were slightly out of phase but significantly between 2 colonies, which could be due to site-specific differences or presence/absence of artificial lights. Moonlight could be overridden by artificial light at our artificially lit colony, but the similar amplitude of attendance patterns between colonies suggests that artificial light did not mask the moonlight effect. Further research is indeed necessary to understand how seabirds respond to the increasing artificial night light levels.  
  Address Department of Evolutionary Ecology, Estación Biológica de Doñana, Consejo Superior de Investigaciones Científicas, Avda. Américo Vespucio s/n, 41092 Seville, Spain; airamrguez(at)ebd.csic.es  
  Corporate Author Thesis  
  Publisher SAGE Place of Publication Editor  
  Language (down) English Summary Language English Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0748-7304 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number IDA @ john @ Serial 1345  
Permanent link to this record
 

 
Author Le Tallec, T.; Théry, M.; Perret, M. url  doi
openurl 
  Title Melatonin concentrations and timing of seasonal reproduction in male mouse lemurs (Microcebus murinus) exposed to light pollution Type Journal Article
  Year 2016 Publication Journal of Mammalogy Abbreviated Journal J of Mammalogy  
  Volume 97 Issue 3 Pages 753-760  
  Keywords Animals; light pollution; photobiology; core temperature; locomotor activity; melatonin; Microcebus murinus; primate; testosterone; lemurs; mouse lemur  
  Abstract Adverse effects of light at night are associated with human health problems and with changes in seasonal reproduction in several species. Owing to its role in the circadian timing system, melatonin production is suspected to mediate excess nocturnal light. To test this hypothesis, we examined the effect of light pollution on the timing of seasonal reproduction on a strict Malagasy long-day breeder, the nocturnal mouse lemur (Microcebus murinus). We randomly exposed 12 males in wintering sexual rest to moonlight or to a light-mimicking nocturnal streetlight for 5 weeks. We monitored urinary 6-sulfatoxymelatonin concentrations (aMT6s), plasma testosterone concentrations, and testis size, and we recorded daily rhythms of core temperature and locomotor activity. In males exposed to light pollution, we observed a significant decrease in urinary aMT6s concentrations associated with changes in daily rhythm profiles and with activation of reproductive function. These results showed that males entered spontaneous sexual recrudescence leading to a summer acclimatization state, which suggests that light at night disrupts perception of day length cues, leading to an inappropriate photoentrainment of seasonal rhythms.  
  Address UMR 7179 Centre National de la Recherche Scientifique, Muséum National d’Histoire Naturelle , 1 avenue du petit château, 91800 Brunoy, France; thery(at)mnhn.fr  
  Corporate Author Thesis  
  Publisher Oxford University Press Place of Publication Editor  
  Language (down) English Summary Language English Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number IDA @ john @ Serial 1348  
Permanent link to this record
 

 
Author Aubé, M.; Kocifaj, M.; Zamorano, J.; Solano Lamphar, H.A.; Sanchez de Miguel, A. url  doi
openurl 
  Title The spectral amplification effect of clouds to the night sky radiance in Madrid Type Journal Article
  Year 2016 Publication Journal of Quantitative Spectroscopy and Radiative Transfer Abbreviated Journal Journal of Quantitative Spectroscopy and Radiative Transfer  
  Volume 181 Issue Pages 11-23  
  Keywords Skyglow; Madrid; Spain; Europe; artificial light at night; light pollution; clouds; amplification  
  Abstract Artificial Light at Night (ALAN) may have various environmental impacts ranging from compromising the visibility of astronomical objects to the perturbation of circadian cycles in animals and humans. In the past much research has been carried out to study the impact of ALAN on the radiance of the night sky during clear sky conditions. This was mainly justified by the need for a better understanding of the behavior of ALAN propagation into the environment in order to protect world-class astronomical facilities. More recently, alongside to the threat to the natural starry sky, many issues have emerged from the biological science community. It has been shown that, nearby or inside cities, the presence of cloud cover generally acts as an amplifier for artificial sky radiance while clouds behave as attenuators for remote observers. In this paper we show the spectral behavior of the zenith sky radiance amplification factor exerted by clouds inside a city. We compare in-situ measurements made with the spectrometer SAND-4 with a numerical model applied to the specific geographical context of the Universidad Complutense de Madrid in Spain.  
  Address Cégep de Sherbrooke, 475 rue du Cégep, Sherbrooke, Canada J1E 4K1; aubema(at)gmail.com  
  Corporate Author Thesis  
  Publisher Elsevier Place of Publication Editor  
  Language (down) English Summary Language English Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0022-4073 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number IDA @ john @ Serial 1351  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: