|   | 
Details
   web
Records
Author Hu, T.; Huang, X.
Title A novel locally adaptive method for modeling the spatiotemporal dynamics of global electric power consumption based on DMSP-OLS nighttime stable light data Type Journal Article
Year 2019 Publication Applied Energy Abbreviated Journal Applied Energy
Volume 240 Issue Pages 778-792
Keywords Remote Sensing
Abstract Timely and reliable estimation of electricity power consumption (EPC) is essential to the rational deployment of electricity power resources. Nighttime stable light (NSL) data from the Defense Meteorological Satellite Program Operational Linescan System (DMSP-OLS) have the potential to model global 1-km gridded EPC. A processing chain to estimate EPC includes: (1) NSL data correction; and (2) regression model between EPC statistics and NSL data. For the global gridded EPC estimation, the current approach is to correct the global NSL image in a uniform manner and establish the linear relationships between NSL and EPC. However, the impacts of local socioeconomic inconsistencies on the NSL correction and model establishment are not fully considered. Therefore, in this paper, we propose a novel locally adaptive method for global EPC estimation. Firstly, we set up two options (with or without the correction) for each local area considering the global NSL image is not saturated everywhere. Secondly, three directions (forward, backward, or average) are alternatives for the inter-annual correction to remove the discontinuity effect of NSL data. Thirdly, four optional models (linear, logarithmic, exponential, or second-order polynomial) are adopted for the EPC estimation of each local area with different socioeconomic dynamic. Finally, the options for each step constitute all candidate processing chains, from which the optimal one is adaptively chosen for each local area based on the coefficient of determination. The results demonstrate that our product outperforms the existing one, at global, continental, and national scales. Particularly, the proportion of countries/districts with a high accuracy (MARE (mean of the absolute relative error)  ≤ 10%) increases from 17.8% to 57.8% and the percentage of countries/districts with inaccurate results (MARE > 50%) decreases sharply from 23.0% to 3.7%. This product can enhance the detailed understanding of the spatiotemporal dynamics of global EPC.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language (up) Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0306-2619 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number GFZ @ kyba @ Serial 2242
Permanent link to this record
 

 
Author Middleton, B.; Stone, B.M.; Arendt, J.
Title Human circadian phase in 12:12 h, 200:<8 lux and 1000:<8 lux light-dark cycles, without scheduled sleep or activity Type Journal Article
Year 2002 Publication Neuroscience Letters Abbreviated Journal Neuroscience Letters
Volume 329 Issue 1 Pages 41-44
Keywords Human Health
Abstract The light levels required to maintain human circadian phase in the absence of other strong time cues are not defined. We investigated circadian phase in two groups of men, living in partial temporal isolation, exposed to 12 h:12 h light:dark cycles of: (A) 200:<8 lux, broad spectrum white light for 14 days; and (B) 1000:<8lux for 14 days. The rhythm variables measured were urinary 6-sulphatoxymelatonin, rectal temperature, activity and rest (actigraphy and sleep logs). In 200:<8 lux four/six individuals showed phase delays. Exposure to 1000:<8 lux appeared to maintain synchronisation of rest-activity to 24 h, but with a significant overall phase advance of 0.81 h in temperature. These observations suggest that domestic intensity light does not maintain phase without scheduled sleep/activity, possibly due to indirect effects on behaviour influencing light exposure.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language (up) Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0304-3940 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number GFZ @ kyba @ Serial 2247
Permanent link to this record
 

 
Author Paranunzio, R.; Ceola, S.; Laio, F.; Montanari, A.
Title Evaluating the Effects of Urbanization Evolution on Air Temperature Trends Using Nightlight Satellite Data Type Journal Article
Year 2019 Publication Atmosphere Abbreviated Journal Atmosphere
Volume 10 Issue 3 Pages 117
Keywords Remote Sensing
Abstract Confounding factors like urbanization and land-use change could introduce uncertainty to the estimation of global temperature trends related to climate change. In this work, we introduce a new way to investigate the nexus between temporal trends of temperature and urbanization data at the global scale in the period from 1992 to 2013. We analyze air temperature data recorded from more than 5000 weather stations worldwide and nightlight satellite measurements as a proxy for urbanization. By means of a range of statistical methods, our results quantify and outline that the temporal evolution of urbanization affects temperature trends at multiple spatial scales with significant differences at regional and continental scales. A statistically significant agreement in temperature and nightlight trends is detected, especially in low and middle-income regions, where urbanization is rapidly growing. Conversely, in continents such as Europe and North America, increases in temperature trends are typically detected along with non-significant nightlight trends.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language (up) Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2073-4433 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number GFZ @ kyba @ Serial 2249
Permanent link to this record
 

 
Author Cochard, P.; Galstian, T.; Cloutier, C.
Title The proportion of blue light affects parasitoid wasp behavior in LED-extended photoperiod in greenhouses: Increased parasitism and offspring sex ratio bias Type Journal Article
Year 2019 Publication Biological Control Abbreviated Journal Biological Control
Volume 133 Issue Pages 9-17
Keywords Animals
Abstract The increasing use of specific wavelengths involving light-emitting diodes (LEDs) under greenhouses enables to overcome the lack of light during winter months, helping crops photosynthesis or vegetative growth. However, modification of the light environment as well as the photoperiod may also alter directly or indirectly the activity of both beneficial and pest insects that depend on plants. Here, we submitted the parasitic wasp Aphidius ervi and its main host the pea aphid, to 4 ratios of red(R): blue(B) LEDs used to lengthen the photoperiod inside a growth chamber. We recorded the parasitism rate of aphids and the sex ratio of newly emerged wasps to evaluate if A. ervi could remain an efficient biological control agent under modified light environments. We found that increasing the 8 h of photophase to 16 h by supplementing with R/B LEDs increased the daily parasitic activity of the wasp as well as their egg laying behavior. Under the 100R light supplement, about 80% of the emerged adults were males, against 50% under 25R:75B light treatment. These results indicate that A. ervi remains a good biological control agent when the light environment is modified. However, the use of red light to extend the photophase has the potential to negatively affect population dynamics of these parasitoids due to its male-bias impact on the sex ratio.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language (up) Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1049-9644 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number GFZ @ kyba @ Serial 2253
Permanent link to this record
 

 
Author Rebke, M.; Dierschke, V.; Weiner, C.N.; Aumüller, R.; Hill, K.; Hill, R.
Title Attraction of nocturnally migrating birds to artificial light: The influence of colour, intensity and blinking mode under different cloud cover conditions Type Journal Article
Year 2019 Publication Biological Conservation Abbreviated Journal Biological Conservation
Volume 233 Issue Pages 220-227
Keywords Animals
Abstract A growing number of offshore wind farms have led to a tremendous increase in artificial lighting in the marine environment. This study disentangles the connection of light characteristics, which potentially influence the reaction of nocturnally migrating passerines to artificial illumination under different cloud cover conditions. In a spotlight experiment on a North Sea island, birds were exposed to combinations of light colour (red, yellow, green, blue, white), intensity (half, full) and blinking mode (intermittent, continuous) while measuring their number close to the light source with thermal imaging cameras.

We found that no light variant was constantly avoided by nocturnally migrating passerines crossing the sea. The number of birds did neither differ between observation periods with blinking light of different colours nor compared to darkness. While intensity did not influence the number attracted, birds were drawn more towards continuous than towards blinking illumination, when stars were not visible. Red continuous light was the only exception that did not differ from the blinking counterpart. Continuous green, blue and white light attracted significantly more birds than continuous red light in overcast situations.

Our results suggest that light sources offshore should be restricted to a minimum, but if lighting is needed, blinking light is to be preferred over continuous light, and if continuous light is required, red light should be applied.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language (up) Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0006-3207 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number GFZ @ kyba @ Serial 2255
Permanent link to this record