toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Do, Q.-T.; Shapiro, J.N.; Elvidge, C.D.; Abdel-Jelil, M.; Ahn, D.P.; Baugh, K.; Hansen-Lewis, J.; Zhizhin, M.; Bazilian, M.D. url  doi
openurl 
  Title Terrorism, geopolitics, and oil security: Using remote sensing to estimate oil production of the Islamic State Type Journal Article
  Year 2018 Publication Energy Research & Social Science Abbreviated Journal Energy Research & Social Science  
  Volume 44 Issue Pages 411-418  
  Keywords Remote Sensing; Economics  
  Abstract As the world’s most traded commodity, oil production is typically well monitored and analyzed. It also has established links to geopolitics, international relations, and security. Despite this attention, the illicit production, refining, and trade of oil and derivative products occur all over the world and provide significant revenues outside of the oversight and regulation of governments. A prominent manifestation of this phenomenon is how terrorist and insurgent organizations—including the Islamic State group, also known as ISIL/ISIS or Daesh—use oil as a revenue source. Understanding the spatial and temporal variation in production can help determine the scale of operations, technical capacity, and revenue streams. This information, in turn, can inform both security and reconstruction strategies. To this end, we use satellite multi-spectral imaging and ground-truth pre-war output data to effectively construct a real-time census of oil production in areas controlled by the ISIL terrorist group. More broadly, remotely measuring the activity of extractive industries in conflict-affected areas without reliable administrative data can support a broad range of public policy and decisions and military operations.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2214-6296 ISBN Medium (up)  
  Area Expedition Conference  
  Notes Approved no  
  Call Number GFZ @ kyba @ Serial 1864  
Permanent link to this record
 

 
Author Grenis, K.; Murphy, S.M. url  doi
openurl 
  Title Direct and indirect effects of light pollution on the performance of an herbivorous insect Type Journal Article
  Year 2018 Publication Insect Science Abbreviated Journal Insect Sci  
  Volume 26 Issue 4 Pages 770-776  
  Keywords Animals; Plants  
  Abstract Light pollution is a global disturbance with resounding impacts on a wide variety of organisms, but our understanding of these impacts is restricted to relatively few higher vertebrate species. We tested the direct effects of light pollution on herbivore performance as well as indirect effects mediated by host plant quality. We found that artificial light from streetlights alters plant toughness. Additionally, we found evidence of both direct and indirect effects of light pollution on the performance of an herbivorous insect, which indicates that streetlights can have cascading impacts on multiple trophic levels. Our novel findings suggest that light pollution can alter plant-insect interactions and thus may have important community-wide consequences.  
  Address Department of Biological Sciences, University of Denver, Denver, Colorado, USA  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1672-9609 ISBN Medium (up)  
  Area Expedition Conference  
  Notes PMID:29425403 Approved no  
  Call Number GFZ @ kyba @ Serial 1865  
Permanent link to this record
 

 
Author Petržala, J. url  doi
openurl 
  Title Feasibility of inverse problem solution for determination of city emission function from night sky radiance measurements Type Journal Article
  Year 2018 Publication Journal of Quantitative Spectroscopy and Radiative Transfer Abbreviated Journal Journal of Quantitative Spectroscopy and Radiative Transfer  
  Volume 213 Issue Pages 86-94  
  Keywords Skyglow  
  Abstract The knowledge of the emission function of a city is crucial for simulation of sky glow in its vicinity. The indirect methods to achieve this function from radiances measured over a part of the sky have been recently developed. In principle, such methods represent an ill-posed inverse problem. This paper deals with the theoretical feasibility study of various approaches to solving of given inverse problem. Particularly, it means testing of fitness of various stabilizing functionals within the Tikhonov’s regularization. Further, the L-curve and generalized cross validation methods were investigated as indicators of an optimal regularization parameter. At first, we created the theoretical model for calculation of a sky spectral radiance in the form of a functional of an emission spectral radiance. Consequently, all the mentioned approaches were examined in numerical experiments with synthetical data generated for the fictitious city and loaded by random errors. The results demonstrate that the second order Tikhonov’s regularization method together with regularization parameter choice by the L-curve maximum curvature criterion provide solutions which are in good agreement with the supposed model emission functions.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0022-4073 ISBN Medium (up)  
  Area Expedition Conference  
  Notes Approved no  
  Call Number GFZ @ kyba @ Serial 1868  
Permanent link to this record
 

 
Author Duriscoe, D.M.; Anderson, S.J.; Luginbuhl, C.B.; Baugh, K.E. url  doi
openurl 
  Title A simplified model of all-sky artificial sky glow derived from VIIRS Day/Night band data Type Journal Article
  Year 2018 Publication Journal of Quantitative Spectroscopy and Radiative Transfer Abbreviated Journal Journal of Quantitative Spectroscopy and Radiative Transfer  
  Volume 214 Issue Pages 133-145  
  Keywords Skyglow; Remote Sensing  
  Abstract We present a simplified method using geographic analysis tools to predict the average artificial luminance over the hemisphere of the night sky, expressed as a ratio to the natural condition. The VIIRS Day/Night Band upward radiance data from the Suomi NPP orbiting satellite was used for input to the model. The method is based upon a relation between sky glow brightness and the distance from the observer to the source of upward radiance. This relationship was developed using a Garstang radiative transfer model with Day/Night Band data as input, then refined and calibrated with ground-based all-sky V-band photometric data taken under cloudless and low atmospheric aerosol conditions. An excellent correlation was found between observed sky quality and the predicted values from the remotely sensed data. Thematic maps of large regions of the earth showing predicted artificial V-band sky brightness may be quickly generated with modest computing resources. We have found a fast and accurate method based on previous work to model all-sky quality. We provide limitations to this method. The proposed model meets requirements needed by decision makers and land managers of an easy to interpret and understand metric of sky quality.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0022-4073 ISBN Medium (up)  
  Area Expedition Conference  
  Notes Approved no  
  Call Number GFZ @ kyba @ Serial 1879  
Permanent link to this record
 

 
Author Eriksen, A.; Wabakken, P. url  doi
openurl 
  Title Activity patterns at the Arctic Circle: nocturnal eagle owls and interspecific interactions during continuous midsummer daylight Type Journal Article
  Year 2018 Publication Journal of Avian Biology Abbreviated Journal J Avian Biol  
  Volume 49 Issue 7 Pages e01781  
  Keywords Animals  
  Abstract Circadian rhythms result from adaptations to biotic and abiotic environmental conditions that cycle through the day, such as light, temperature, or temporal overlap between interacting species. At high latitudes, close to or beyond the polar circles, uninterrupted midsummer daylight may pose a challenge to the circadian rhythms of otherwise nocturnal species, such as eagle owls Bubo bubo. By non‐invasive field methods, we studied eagle owl activity in light of their interactions with their main prey the water vole Arvicola amphibius, and their competitor the white‐tailed eagle Haliaeetus albicilla during continuous midsummer daylight on open, treeless islands in coastal Northern Norway. We evaluated circadian rhythms, temporal overlap, exposure, and spatial distribution. The owls maintained a nocturnal activity pattern, possibly because slightly dimmer light around midnight offered favourable hunting conditions. The eagles were active throughout the 24‐hour period as opposed to the strictly diurnal rhythm reported elsewhere, thus increasing temporal overlap and the potential for interference competition between the two avian predators. This may indicate an asymmetry, with the owls facing the highest cost of interference competition. The presence of eagles combined with constant daylight in this open landscape may make the owls vulnerable to interspecific aggression, and contrary to the available literature, eagle owls rarely exposed themselves visually during territorial calls, possibly to avoid detection by eagles. We found indications of spatial segregation between owls and eagles reflecting differences in main prey, possibly in combination with habitat‐mediated avoidance. Eagle owl vocal activity peaked in the evening before a nocturnal peak in visual observations, when owls were active hunting, consistent with the hypothesis of a dusk chorus in nocturnal bird species. The owls may have had to trade‐off between calling and foraging during the few hours around midnight when slightly dimmer light reduced the detection risk while also providing better hunting conditions.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0908-8857 ISBN Medium (up)  
  Area Expedition Conference  
  Notes Approved no  
  Call Number GFZ @ kyba @ Serial 1881  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: