|   | 
Details
   web
Records
Author Spoelstra, K.; Ramakers, J.J.C.; van Dis, N.E.; Visser, M.E.
Title No effect of artificial light of different colors on commuting Daubenton's bats (Myotis daubentonii) in a choice experiment Type Journal Article
Year 2018 Publication Journal of Experimental Zoology. Part A, Ecological and Integrative Physiology Abbreviated Journal J Exp Zool A Ecol Integr Physiol
Volume 329 Issue 8-9 Pages 506-510
Keywords Animals
Abstract Progressive illumination at night poses an increasing threat to species worldwide. Light at night is particularly problematic for bats as most species are nocturnal and often cross relatively large distances when commuting between roosts and foraging grounds. Earlier studies have shown that illumination of linear structures in the landscape disturbs commuting bats, and that the response of bats to light may strongly depend on the light spectrum. Here, we studied the impact of white, green, and red light on commuting Daubenton's bats (Myotis daubentonii). We used a unique location where commuting bats cross a road by flying through two identical, parallel culverts underneath. We illuminated the culverts with white, red, and green light, with an intensity of 5 lux at the water surface. Bats had to choose between the two culverts, each with a different lighting condition every night. We presented all paired combinations of white, green, and red light and dark control in a factorial design. Contrary to our expectations, the number of bat passes through a culvert was unaffected by the presence of light. Furthermore, bats did not show any preference for light color. These results show that the response of commuting Daubenton's bats to different colors of light at night with a realistic intensity may be limited when passing through culverts.
Address Department of Animal Ecology, Netherlands Institute of Ecology (NIOO-KNAW), Wageningen, The Netherlands
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2471-5638 ISBN Medium
Area Expedition Conference
Notes (down) PMID:29808964 Approved no
Call Number GFZ @ kyba @ Serial 1927
Permanent link to this record
 

 
Author Russart, K.L.G.; Nelson, R.J.
Title Artificial light at night alters behavior in laboratory and wild animals Type Journal Article
Year 2018 Publication Journal of Experimental Zoology. Part A, Ecological and Integrative Physiology Abbreviated Journal J Exp Zool A Ecol Integr Physiol
Volume 329 Issue 8-9 Pages 401-408
Keywords Animals; Review
Abstract Life has evolved to internalize and depend upon the daily and seasonal light cycles to synchronize physiology and behavior with environmental conditions. The nightscape has been vastly changed in response to the use of artificial lighting. Wildlife is now often exposed to direct lighting via streetlights or indirect lighting via sky glow at night. Because many activities rely on daily and seasonal light cues, the effects of artificial light at night could be extensive, but remain largely unknown. Laboratory studies suggest exposure to light at night can alter typical timing of daily locomotor activity and shift the timing of foraging/food intake to the daytime in nocturnal rodents. Additionally, nocturnal rodents decrease anxiety-like behaviors (i.e., spend more time in the open and increase rearing up) in response to even dim light at night. These are all likely maladaptive responses in the wild. Photoperiodic animals rely on seasonal changes in day length as a cue to evoke physiological and behavioral modifications to anticipate favorable and unfavorable conditions for survival and reproduction. Light at night can mask detection of short days, inappropriately signal long days, and thus desynchronize seasonal reproductive activities. We review laboratory and the sparse field studies that address the effects of exposure to artificial light at night to propose that exposure to light at night disrupts circadian and seasonal behavior in wildlife, which potentially decreases individual fitness and modifies ecosystems.
Address Behavioral Medicine and Psychiatry, School of Medicine, West Virginia University, Morgantown, West Virginia
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2471-5638 ISBN Medium
Area Expedition Conference
Notes (down) PMID:29806740 Approved no
Call Number GFZ @ kyba @ Serial 1928
Permanent link to this record
 

 
Author Giraudeau, M.; Sepp, T.; Ujvari, B.; Ewald, P.W.; Thomas, F.
Title Human activities might influence oncogenic processes in wild animal populations Type Journal Article
Year 2018 Publication Nature Ecology & Evolution Abbreviated Journal Nat Ecol Evol
Volume 2 Issue Pages 1065-1070
Keywords Commentary; Animals
Abstract Based on the abundant studies available on humans showing clear associations between rapid environmental changes and the rate of neoplasia, we propose that human activities might increase cancer rate in wild populations through numerous processes. Most of the research on this topic has concentrated on wildlife cancer prevalence in environments that are heavily contaminated with anthropogenic chemicals. Here, we propose that human activities might also increase cancer rate in wild populations through additional processes including light pollution, accidental (for example, human waste) or intentional (for example, bird feeders) wildlife feeding (and the associated change of diet), or reduction of genetic diversity in human-impacted habitats. The human species can thus be defined as an oncogenic species, moderating the environment in the way that it causes cancer in other wild populations. As human impacts on wildlife are predicted to increase rather than decrease (for example, in the context of urbanization), acknowledging the possible links between human activity and cancer in wild populations is crucial.
Address MIVEGEC, Montpellier, France. frederic.thomas2@ird.fr
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2397-334X ISBN Medium
Area Expedition Conference
Notes (down) PMID:29784981 Approved no
Call Number GFZ @ kyba @ Serial 1921
Permanent link to this record
 

 
Author Depner, C.M.; Melanson, E.L.; McHill, A.W.; Wright, K.P.J.
Title Mistimed food intake and sleep alters 24-hour time-of-day patterns of the human plasma proteome Type Journal Article
Year 2018 Publication Proceedings of the National Academy of Sciences of the United States of America Abbreviated Journal Proc Natl Acad Sci U S A
Volume 115 Issue 23 Pages E5390-E5399
Keywords Human Health
Abstract Proteomics holds great promise for understanding human physiology, developing health biomarkers, and precision medicine. However, how much the plasma proteome varies with time of day and is regulated by the master circadian suprachiasmatic nucleus brain clock, assessed here by the melatonin rhythm, is largely unknown. Here, we assessed 24-h time-of-day patterns of human plasma proteins in six healthy men during daytime food intake and nighttime sleep in phase with the endogenous circadian clock (i.e., circadian alignment) versus daytime sleep and nighttime food intake out of phase with the endogenous circadian clock (i.e., circadian misalignment induced by simulated nightshift work). We identified 24-h time-of-day patterns in 573 of 1,129 proteins analyzed, with 30 proteins showing strong regulation by the circadian cycle. Relative to circadian alignment, the average abundance and/or 24-h time-of-day patterns of 127 proteins were altered during circadian misalignment. Altered proteins were associated with biological pathways involved in immune function, metabolism, and cancer. Of the 30 circadian-regulated proteins, the majority peaked between 1400 hours and 2100 hours, and these 30 proteins were associated with basic pathways involved in extracellular matrix organization, tyrosine kinase signaling, and signaling by receptor tyrosine-protein kinase erbB-2. Furthermore, circadian misalignment altered multiple proteins known to regulate glucose homeostasis and/or energy metabolism, with implications for altered metabolic physiology. Our findings demonstrate the circadian clock, the behavioral wake-sleep/food intake-fasting cycle, and interactions between these processes regulate 24-h time-of-day patterns of human plasma proteins and help identify mechanisms of circadian misalignment that may contribute to metabolic dysregulation.
Address Division of Endocrinology, Metabolism, and Diabetes, University of Colorado Anschutz Medical Campus, Aurora, CO 80045
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0027-8424 ISBN Medium
Area Expedition Conference
Notes (down) PMID:29784788 Approved no
Call Number GFZ @ kyba @ Serial 1916
Permanent link to this record
 

 
Author Bowne, D.R.; Cosentino, B.J.; Anderson, L.J.; Bloch, C.P.; Cooke, S.; Crumrine, P.W.; Dallas, J.; Doran, A.; Dosch, J.J.; Druckenbrod, D.L.; Durtsche, R.D.; Garneau, D.; Genet, K.S.; Fredericksen, T.S.; Kish, P.A.; Kolozsvary, M.B.; Kuserk, F.T.; Lindquist, E.S.; Mankiewicz, C.; March, J.G.; Muir, T.J.; Murray, K.G.; Santulli, M.N.; Sicignano, F.J.; Smallwood, P.D.; Urban, R.A.; Winnett-Murray, K.; Zimmermann, C.R.
Title Effects of urbanization on the population structure of freshwater turtles across the United States Type Journal Article
Year 2018 Publication Conservation Biology : the Journal of the Society for Conservation Biology Abbreviated Journal Conserv Biol
Volume 32 Issue 5 Pages 1150-1161
Keywords Animals; Remote Sensing
Abstract Landscape-scale alterations that accompany urbanization may negatively affect the population structure of wildlife species such as freshwater turtles. Changes to nesting sites and higher mortality rates due to vehicular collisions and increased predator populations may particularly affect immature turtles and mature female turtles. We hypothesized that the proportions of adult female and immature turtles in a population will negatively correlate with landscape urbanization. As a collaborative effort of the Ecological Research as Education Network (EREN), we sampled freshwater turtle populations in 11 states across the central and eastern United States. Contrary to expectations, we found a significant positive relationship between proportions of mature female painted turtles (Chrysemys picta) and urbanization. We did not detect a relationship between urbanization and proportions of immature turtles. Urbanization may alter the thermal environment of nesting sites such that more females are produced as urbanization increases. Our approach of creating a collaborative network of scientists and students at undergraduate institutions proved valuable in terms of testing our hypothesis over a large spatial scale while also allowing students to gain hands-on experience in conservation science. This article is protected by copyright. All rights reserved.
Address Department of Biology, Rogers State University, 1701 W. Will Rogers Boulevard, Claremore, OK 74017, U.S.A
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0888-8892 ISBN Medium
Area Expedition Conference
Notes (down) PMID:29781169 Approved no
Call Number GFZ @ kyba @ Serial 1920
Permanent link to this record