|   | 
Details
   web
Records
Author Roman, M.O.; Stokes, E.C.; Shrestha, R.; Wang, Z.; Schultz, L.; Carlo, E.A.S.; Sun, Q.; Bell, J.; Molthan, A.; Kalb, V.; Ji, C.; Seto, K.C.; McClain, S.N.; Enenkel, M.
Title Satellite-based assessment of electricity restoration efforts in Puerto Rico after Hurricane Maria Type Journal Article
Year 2019 Publication PloS one Abbreviated Journal PLoS One
Volume 14 Issue 6 Pages e0218883
Keywords Remote Sensing
Abstract A real-time understanding of the distribution and duration of power outages after a major disaster is a precursor to minimizing their harmful consequences. Here, we develop an approach for using daily satellite nighttime lights data to create spatially disaggregated power outage estimates, tracking electricity restoration efforts after disasters strike. In contrast to existing utility data, these estimates are independent, open, and publicly-available, consistently measured across regions that may be serviced by several different power companies, and inclusive of distributed power supply (off-grid systems). We apply the methodology in Puerto Rico following Hurricane Maria, which caused the longest blackout in US history. Within all of the island's settlements, we track outages and recovery times, and link these measures to census-based demographic characteristics of residents. Our results show an 80% decrease in lights, in total, immediately after Hurricane Maria. During the recovery, a disproportionate share of long-duration power failures (> 120 days) occurred in rural municipalities (41% of rural municipalities vs. 29% of urban municipalities), and in the northern and eastern districts. Unexpectedly, we also identify large disparities in electricity recovery between neighborhoods within the same urban area, based primarily on the density of housing. For many urban areas, poor residents, the most vulnerable to increased mortality and morbidity risks from power losses, shouldered the longest outages because they lived in less dense, detached housing where electricity restoration lagged. The approach developed in this study demonstrates the potential of satellite-based estimates of power recovery to improve the real-time monitoring of disaster impacts, globally, at a spatial resolution that is actionable for the disaster response community.
Address Harvard Humanitarian Initiative, Cambridge, Massachusetts, United States of America
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1932-6203 ISBN Medium
Area Expedition Conference
Notes (down) PMID:31251791 Approved no
Call Number GFZ @ kyba @ Serial 2564
Permanent link to this record
 

 
Author Kim, K.-N.; Huang, Q.-Y.; Lei, C.-L.
Title Advances in insect phototaxis and application to pest management: A review Type Journal Article
Year 2019 Publication Pest Management Science Abbreviated Journal Pest Manag Sci
Volume in press Issue Pages
Keywords Review; Animals
Abstract Many insects, especially nocturnal insects, exhibit positive phototaxis to artificial lights. Many light traps are currently used to monitor and manage insect pest populations, with light traps playing a crucial role in physical pest control. Efficient use of light traps to attract target insect pests becomes an important topic in application of integrated pest management (IPM). Phototactic responses of insects vary among species, light characteristics and the physiological status of the insects. In addition, light can cause several biological responses, including biochemical, physiological, molecular and fitness changes in insects. In this review, we discuss several hypotheses on insect phototaxis, affecting factors on insect phototaxis, insect sensitive wavelengths, biological responses of insects to light and countermeasures for conserving beneficial insects and increasing trapping effect. Additionally, we provide information on the different sensitivities to wavelengths causing positive phototactic behavior on more than 70 insect pest and beneficial insect species. The use of advanced light traps equipped with superior light sources, such as light emitting diodes (LEDs), will make physical pest control in IPM more efficient. This article is protected by copyright. All rights reserved.
Address Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, China
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1526-498X ISBN Medium
Area Expedition Conference
Notes (down) PMID:31251458 Approved no
Call Number GFZ @ kyba @ Serial 2574
Permanent link to this record
 

 
Author C-Sanchez, E.; Sanchez-Medina, A.J.; Alonso-Hernandez, J.B.; Voltes-Dorta, A.
Title Astrotourism and Night Sky Brightness Forecast: First Probabilistic Model Approach Type Journal Article
Year 2019 Publication Sensors (Basel, Switzerland) Abbreviated Journal Sensors (Basel)
Volume 19 Issue 13 Pages
Keywords Skyglow; Society
Abstract Celestial tourism, also known as astrotourism, astronomical tourism or, less frequently, star tourism, refers to people's interest in visiting places where celestial phenomena can be clearly observed. Stars, skygazing, meteor showers or comets, among other phenomena, arouse people's interest, however, good night sky conditions are required to observe such phenomena. From an environmental point of view, several organisations have surfaced in defence of the protection of dark night skies against light pollution, while from an economic point of view; the idea also opens new possibilities for development in associated areas. The quality of dark skies for celestial tourism can be measured by night sky brightness (NSB), which is used to quantify the visual perception of the sky, including several light sources at a specific point on earth. The aim of this research is to model the nocturnal sky brightness by training and testing a probabilistic model using real NSB data. ARIMA and artificial neural network models have been applied to open NSB data provided by the Globe at Night international programme, with the results of this first model approach being promising and opening up new possibilities for astrotourism. To the best of the authors' knowledge, probabilistic models have not been applied to NSB forecasting.
Address Management Science and Business Economics Group, University of Edinburgh Business School, Edinburgh EH8 9JS, UK
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1424-8220 ISBN Medium
Area Expedition Conference
Notes (down) PMID:31247919 Approved no
Call Number GFZ @ kyba @ Serial 2571
Permanent link to this record
 

 
Author Maggio, R.; Vaglini, F.; Rossi, M.; Fasciani, I.; Pietrantoni, I.; Marampon, F.; Corsini, G.U.; Scarselli, M.; Millan, M.J.
Title Parkinson's disease and light: The bright and the Dark sides Type Journal Article
Year 2019 Publication Brain Research Bulletin Abbreviated Journal Brain Res Bull
Volume 150 Issue Pages 290-296
Keywords Humah Health; Light pollution; Near-infrared light; Parkinson's disease
Abstract Light exerts a major influence on human behaviour and health, mainly owing to the importance of sight in our lives, but also due to its entrainment of daily rhythms via the suprachiasmatic nucleus, the master pacemaker. Light may also be a useful clinical medium, as in lumino-therapy for the improvement of depressed mood. Further, as discussed herein, local application of near infrared light to the substantia nigra exerts neuroprotective properties in models of Parkinson's disease. However, light also has a darker side. In general, as regards the growing problem to human health – and the natural world – of excess exposure to artificial light: both urban glow and ubiquitous screens. Moreover, over-exposure to light, in particular fluorescent light, disrupts circadian rhythms and sleep, and may damage dopaminergic neurons. Is it, then, a neglected risk factor for Parkinson's disease? The present article discusses epidemiological and experimental evidence supporting beneficial and potentially deleterious impact of light on dopaminergic neurons and highlights the mechanisms whereby light might influence neuronal tissue.
Address Centre for Innovation in Neuropsychiatry, Institut de Recherches Servier, 125, Chemin de Ronde, 78290, Croissy sur Seine, France. Electronic address: mark.millan@servier.com
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0361-9230 ISBN Medium
Area Expedition Conference
Notes (down) PMID:31226407 Approved no
Call Number GFZ @ kyba @ Serial 2586
Permanent link to this record
 

 
Author David, A.; Smet, K.A.G.; Whitehead, L.
Title Methods for Assessing Quantity and Quality of Illumination Type Journal Article
Year 2019 Publication Annual Review of Vision Science Abbreviated Journal Annu Rev Vis Sci
Volume in press Issue Pages
Keywords Review; Vision
Abstract Human vision provides useful information about the shape and color of the objects around us. It works well in many, but not all, lighting conditions. Since the advent of human-made light sources, it has been important to understand how illumination affects vision quality, but this has been surprisingly difficult. The widespread introduction of solid-state light emitters has increased the urgency of this problem. Experts still debate how lighting can best enable high-quality vision-a key issue since about one-fifth of global electrical power production is used to make light. Photometry, the measurement of the visual quantity of light, is well established, yet significant uncertainties remain. Colorimetry, the measurement of color, has achieved good reproducibility, but researchers still struggle to understand how illumination can best enable high-quality color vision. Fortunately, in recent years, considerable progress has been made. Here, we summarize the current understanding and discuss key areas for future study. Expected final online publication date for the Annual Review of Vision Science Volume 5 is September 16, 2019. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Address Department of Physics and Astronomy, University of British Columbia, Vancouver BC V6T 1Z1, Canada; email: lorne.whitehead@ubc.ca
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2374-4642 ISBN Medium
Area Expedition Conference
Notes (down) PMID:31226013 Approved no
Call Number GFZ @ kyba @ Serial 2576
Permanent link to this record