toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Heo, J.-Y.; Kim, K.; Fava, M.; Mischoulon, D.; Papakostas, G.I.; Kim, M.-J.; Kim, D.J.; Chang, K.-A.J.; Oh, Y.; Yu, B.-H.; Jeon, H.J. url  doi
openurl 
  Title Effects of smartphone use with and without blue light at night in healthy adults: A randomized, double-blind, cross-over, placebo-controlled comparison Type Journal Article
  Year 2017 Publication Journal of Psychiatric Research Abbreviated Journal J Psychiatr Res  
  Volume 87 Issue Pages 61-70  
  Keywords Human Health  
  Abstract Smartphones deliver light to users through Light Emitting Diode (LED) displays. Blue light is the most potent wavelength for sleep and mood. This study investigated the immediate effects of smartphone blue light LED on humans at night. We investigated changes in serum melatonin levels, cortisol levels, body temperature, and psychiatric measures with a randomized, double-blind, cross-over, placebo-controlled design of two 3-day admissions. Each subject played smartphone games with either conventional LED or suppressed blue light from 7:30 to 10:00PM (150 min). Then, they were readmitted and conducted the same procedure with the other type of smartphone. Serum melatonin levels were measured in 60-min intervals before, during and after use of the smartphones. Serum cortisol levels and body temperature were monitored every 120 min. The Profile of Mood States (POMS), Epworth Sleepiness Scale (ESS), Fatigue Severity Scale (FSS), and auditory and visual Continuous Performance Tests (CPTs) were administered. Among the 22 participants who were each admitted twice, use of blue light smartphones was associated with significantly decreased sleepiness (Cohen's d = 0.49, Z = 43.50, p = 0.04) and confusion-bewilderment (Cohen's d = 0.53, Z = 39.00, p = 0.02), and increased commission error (Cohen's d = -0.59, t = -2.64, p = 0.02). Also, users of blue light smartphones experienced a longer time to reach dim light melatonin onset 50% (2.94 vs. 2.70 h) and had increases in body temperature, serum melatonin levels, and cortisol levels, although these changes were not statistically significant. Use of blue light LED smartphones at night may negatively influence sleep and commission errors, while it may not be enough to lead to significant changes in serum melatonin and cortisol levels.  
  Address Department of Psychiatry, Depression Center, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, South Korea; Depression Clinical and Research Program, Massachusetts General Hospital, Harvard Medical School, Boston, USA; Department of Health Sciences & Technology, Department of Medical Device Management and Research, and Department of Clinical Research Design and Evaluation, Samsung Advanced Institute for Health Sciences & Technology (SAIHST), Sungkyunkwan University, Seoul, South Korea. Electronic address: jeonhj@skku.edu  
  Corporate Author Thesis  
  Publisher Place of Publication (up) Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0022-3956 ISBN Medium  
  Area Expedition Conference  
  Notes PMID:28017916 Approved no  
  Call Number GFZ @ kyba @ Serial 2456  
Permanent link to this record
 

 
Author Warrant, E. url  doi
openurl 
  Title Superior vision in nocturnal insects inspires new night vision technologies Type Newspaper Article
  Year 2016 Publication SPIE Newsroom Abbreviated Journal SPIE Newsroom  
  Volume Issue Pages  
  Keywords Vision; Animals; Instrumentation  
  Abstract Algorithms that dramatically improve the quality of video sequences captured in very dim light have been developed on the basis of the neural mechanisms in nocturnal insects with excellent visual capabilities.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication (up) Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1818-2259 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number LoNNe @ kyba @; GFZ @ kyba @ Serial 1418  
Permanent link to this record
 

 
Author Challéat, S.; Lapostolle, D. url  doi
openurl 
  Title Concilier éclairage urbain et environnement nocturne : Les enjeux d’une controverse sociotechnique Type Journal Article
  Year 2014 Publication Natures Sciences Sociétés Abbreviated Journal Nat. Sci. Soc.  
  Volume 22 Issue 4 Pages 317-328  
  Keywords History; Energy; Planning; Regulation; Society  
  Abstract La question de l’éclairage urbain nocturne est posée publiquement de manière de plus en plus significative, d’abord aux États-Unis puis en Europe. Cantonnée à l’origine au domaine de l’astronomie, cette question pose problème dans différents secteurs : l’environnement, la santé, l’urbanisme, mais aussi et surtout l’énergie... En croisant une approche sociologique avec une approche géographique, les auteurs font le récit d’une controverse environnementale aboutissant, en France, à l’inscription de la notion de pollution lumineuse dans la loi Grenelle et questionnent sa dimension spatiale. Ils montrent les différentes logiques et interprétations, à l’œuvre autour de la distinction entre « pollution » et « nuisance » lumineuses, qui traversent les scènes de négociation sur les processus de normalisation et la mobilisation d’outils de zonage.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication (up) Editor  
  Language French Summary Language French Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1240-1307 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number LoNNe @ kyba @ Serial 1522  
Permanent link to this record
 

 
Author Delhey, K.; Peters, A. url  doi
openurl 
  Title Implications for conservation of anthropogenic impacts on visual communication and camouflage Type Journal Article
  Year 2016 Publication Conservation Biology : the Journal of the Society for Conservation Biology Abbreviated Journal Conserv Biol  
  Volume 31 Issue 1 Pages 30-39  
  Keywords Conservation  
  Abstract Anthropogenic environmental impacts can disrupt the sensory environment of animals and affect important processes from mate choice to predator avoidance. Currently these effects are best understood for auditory and chemo-sensory modalities and recent reviews highlight their importance for conservation. Here we summarise how anthropogenic changes to the visual environment (ambient light, transmission, backgrounds) affect visual communication and camouflage, and highlight implications for conservation. These implications are particularly evident for disrupted camouflage due to its tight links with survival while the conservation importance of impaired visual communication is less well-documented. Such effects can be potentially severe when they affect critical processes such as pollination or species recognition. However, when impaired mate choice does not lead to hybridization, the conservation consequences are less clear. We suggest that the demographic effects of human impacts on visual communication and camouflage will be particularly strong when: (a) human-induced modifications to the visual environment are evolutionary novel, that is, very different from natural variation, (b) affected species and populations have low levels of intraspecific (genotypic and phenotypic) variation and low levels of behavioural, sensory or physiological plasticity and (c) the processes affected are directly related to survival (camouflage), species recognition, or number of offspring produced, rather than offspring quality or attractiveness. The evidence summarized here suggests that anthropogenic effects on the visual environment might be of similar conservation concerns as those on other sensory modalities. This article is protected by copyright. All rights reserved.  
  Address 25 Rainforest Walk, School of Biological Sciences, Monash University, 3800, Clayton, Victoria, Australia  
  Corporate Author Thesis  
  Publisher Place of Publication (up) Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0888-8892 ISBN Medium  
  Area Expedition Conference  
  Notes PMID:27604521 Approved no  
  Call Number LoNNe @ kyba @ Serial 1525  
Permanent link to this record
 

 
Author Bará, S. url  doi
openurl 
  Title Anthropogenic disruption of the night sky darkness in urban and rural areas Type Journal Article
  Year 2016 Publication Royal Society Open Science Abbreviated Journal R. Soc. open sci.  
  Volume 3 Issue 10 Pages 160541  
  Keywords Skyglow  
  Abstract The growing emissions of artificial light to the atmosphere are producing, among other effects, a significant increase of the night sky brightness (NSB) above its expected natural values. A permanent sensor network has been deployed in Galicia (northwest of Iberian peninsula) to monitor the anthropogenic disruption of the night sky darkness in a countrywide area. The network is composed of 14 detectors integrated in automated weather stations of MeteoGalicia, the Galician public meteorological agency. Zenithal NSB readings are taken every minute and the results are openly available in real time for researchers, interested stakeholders and the public at large through a dedicated website. The measurements allow one to assess the extent of the loss of the natural night in urban, periurban, transition and dark rural sites, as well as its daily and monthly time courses. Two metrics are introduced here to characterize the disruption of the night darkness across the year: the significant magnitude (m1/3) and the moonlight modulation factor (γ). The significant magnitude shows that in clear and moonless nights the zenithal night sky in the analysed urban settings is typically 14–23 times brighter than expected from a nominal natural dark sky. This factor lies in the range 7–8 in periurban sites, 1.6–2.5 in transition regions and 0.8–1.6 in rural and mountain dark sky places. The presence of clouds in urban areas strongly enhances the amount of scattered light, easily reaching amplification factors in excess of 25, in comparison with the light scattered in the same places under clear sky conditions. The periodic NSB modulation due to the Moon, still clearly visible in transition and rural places, is barely notable at periurban locations and is practically lost at urban sites.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication (up) Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2054-5703 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number LoNNe @ kyba @ Serial 1544  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: