toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Boyce, P.R.; Gutkowski, J.M. url  doi
openurl 
  Title The if, why and what of street lighting and street crime: A review Type Journal Article
  Year 1995 Publication Lighting Research and Technology Abbreviated Journal Lighting Research and Technology  
  Volume 27 Issue 2 Pages 103-112  
  Keywords Society; Safety  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication (up) Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1477-1535 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number LoNNe @ kagoburian @ Serial 1009  
Permanent link to this record
 

 
Author Ringwald, R.; Rönitzsch, H.; Riedel, M. url  openurl
  Title Praxishandbuch Öffentliche Beleuchtung – Wirtschaftlichkeit, Recht, Technik Type Journal Article
  Year 2013 Publication 1. Aufl. DIN Deutsches Institut für Normung e.V., hrsg., Berlin Wien Zürich: Beuth Verlags GmbH. Abbreviated Journal  
  Volume Issue Pages  
  Keywords Lighting  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication (up) Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number LoNNe @ kagoburian @ Serial 1058  
Permanent link to this record
 

 
Author Minnaar, C.; Boyles, J.G.; Minnaar, I.A.; Sole, C.L.; McKechnie, A.E.; McKenzie, A. url  doi
openurl 
  Title Stacking the odds: light pollution may shift the balance in an ancient predator-prey arms race Type Journal Article
  Year 2014 Publication Journal of Applied Ecology Abbreviated Journal J Appl Ecol  
  Volume 52 Issue 2 Pages 522-531  
  Keywords Ecology; animals; bats; insects; predation; Neoromicia capensis; moths; Cape serotine bat; co-evolution; eared moth; Lepidoptera; predator–prey interactions; prey selection  
  Abstract 1. Artificial night lighting threatens to disrupt strongly conserved light-dependent processes in animals and may have cascading effects on ecosystems as species interactions become altered. Insectivorous bats and their prey have been involved in a nocturnal, co-evolutionary arms race for millions of years. Lights may interfere with anti-bat defensive behaviours in moths, and disrupt a complex and globally ubiquitous interaction between bats and insects, ultimately leading to detrimental consequences for ecosystems on a global scale.

2. We combined experimental and mathematical approaches to determine effects of light pollution on a free-living bat–insect community. We compared prey selection by Cape serotine bats Neoromicia capensis in naturally unlit and artificially lit conditions using a manipulative field experiment, and developed a probabilistic model based on a suite of prey-selection factors to explain differences in observed diet.

3.Moth consumption by N. capensis was low under unlit conditions (mean percentage volume ± SD: 5·91 ± 6·25%), while moth consumption increased sixfold (mean percentage volume ± SD: 35·42 ± 17·90%) under lit conditions despite a decrease in relative moth abundance. Predictive prey-selection models that included high-efficacy estimates for eared-moth defensive behaviour found most support given diet data for bats in unlit conditions. Conversely, models that estimated eared-moth defensive behaviour as absent or low found more support given diet data for bats in lit conditions. Our models therefore suggest the increase in moth consumption was a result of light-induced, decreased eared-moth defensive behaviour.

4. Policy implications. In the current context of unyielding growth in global light pollution, we predict that specialist moth-eating bats and eared moths will face ever-increasing challenges to survival through increased resource competition and predation risk, respectively. Lights should be developed to be less attractive to moths, with the goal of reducing effects on moth behaviour. Unfortunately, market preference for broad-spectrum lighting and possible effects on other taxa make development of moth-friendly lighting improbable. Mitigation should therefore focus on the reduction of temporal, spatial and luminance redundancy in outdoor lighting. Restriction of light inside nature reserves and urban greenbelts can help maintain dark refugia for moth-eating bats and moths, and may become important for their persistence.
 
  Address Department of Zoology and Entomology, Mammal Research Institute, University of Pretoria, Hatfield, South Africa  
  Corporate Author Thesis  
  Publisher Wiley Place of Publication (up) Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0021-8901 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number LoNNe @ christopher.kyba @; IDA @ john @ Serial 1085  
Permanent link to this record
 

 
Author Stone, E.L.; Harris, S.; Jones, G. url  doi
openurl 
  Title Impacts of artificial lighting on bats: a review of challenges and solutions Type Journal Article
  Year 2015 Publication Zeitschrift für Säugetierkunde Abbreviated Journal Zeitschrift für Säugetierkunde  
  Volume Issue Pages  
  Keywords Animals; bats  
  Abstract Light pollution is a major emerging issue in biodiversity conservation, and has important implications for policy development and strategic planning. Although research is now addressing the negative impacts of anthropogenic noise on biota, less attention has been paid to the effects of light pollution. Changes in lighting technology have led to a diverse range of emerging low energy light types and a trend towards the increased use of white light. Light pollution affects ecological interactions across a range of taxa and has adverse effects on behaviours such as foraging, reproduction and communication. Almost a quarter of bat species globally are threatened and the key underlying threat to populations is pressure on resources from increasing human populations. Being nocturnal, bats are among the taxa most likely to be affected by light pollution. In this paper we provide an overview of the current trends in artificial lighting followed by a review of the current evidence of the impacts of lighting on bat behaviour, particularly foraging, commuting, emergence, roosting and hibernation. We discuss taxon-specific effects and potential cumulative ecosystem level impacts. We conclude by summarising some potential strategies to minimise the impacts of lighting on bats and identify key gaps in knowledge and priority areas for future research.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication (up) Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1616-5047 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number LoNNe @ christopher.kyba @ Serial 1112  
Permanent link to this record
 

 
Author Aubé, M. url  doi
openurl 
  Title Physical behaviour of anthropogenic light propagation into the nocturnal environment Type Journal Article
  Year 2015 Publication Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences Abbreviated Journal Philos Trans R Soc Lond B Biol Sci  
  Volume 370 Issue Pages 20140117  
  Keywords Skyglow; artificial light at night; light pollution; radiative transfer; atmospheric effects; scattering; methods; numerical; sensitivity analysis  
  Abstract Propagation of artificial light at night (ALAN) in the environment is now known to have non negligible consequences on fauna, flora and human health. These consequences depend on light levels and their spectral power distributions, which in turn rely on the efficiency of various physical processes involved in the radiative transfer of this light into the atmosphere and its interactions with the built and natural environment. ALAN can affect the living organisms by direct lighting and indirect lighting (scattered by the sky and clouds and/or reflected by local surfaces). This paper mainly focuses on the behaviour of the indirect light scattered under clear sky conditions. Various interaction processes between anthropogenic light sources and the natural environment are discussed. This work mostly relies on a sensitivity analysis conducted with the light pollution radiative transfer model, Illumina (Aubé et al. 2005: Light pollution modelling and detection in a heterogeneous environment: toward a night-time aerosol optical depth retrieval method. In Proc. SPIE 2005, vol. 5890, San Diego, California, USA). More specifically, the impact of (i) the molecular and aerosol scattering and absorption, (ii) the second order of scattering, (iii) the topography and obstacle blocking, (iv) the ground reflectance and (v) the spectrum of light devices and their angular emission functions are examined. This analysis considers different behaviour as a function of the distance from the city centre, along with different zenith viewing angles in the principal plane.  
  Address Département de physique, Cégep de Sherbrooke, Sherbrooke, Quebec, Canada  
  Corporate Author Thesis  
  Publisher Royal Society Place of Publication (up) Editor  
  Language English Summary Language English Original Title  
  Series Editor Series Title The biological impacts of artificial light at night: from molecules to communities Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number IDA @ john @ Serial 1115  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: