toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Jørgensen, L. D., Tambo, T., & Xydis, G. doi  openurl
  Title An efficiency evaluation of radar‐based obstruction lights controlling at a wind turbine test site Type Journal Article
  Year 2019 Publication (down) Wind Energy Abbreviated Journal  
  Volume 22 Issue 4 Pages  
  Keywords Lighting; Public Safety; Planning  
  Abstract In this study, an obstruction lights controlling (OLC) system based on a Terma SCANTER 5000 radar has been installed at a test centre for large wind turbines. The objective of this study was to evaluate the efficiency of the OLC system and to improve this efficiency by introducing new technological features. Once the first assessment had been carried out, new software with improved tracking functionalities was installed to the radar. With the new software, a second assessment was made to compare the new performance to the old one. To analyse the tracks, geographic information system (GIS) tools have been used. A new MATLAB script was developed to automate the assessment as well as to gather data on the tracks. These data sets were used to improve the system performance by introducing a radar cross section (RCS)/speed filter. The outcome of the study is a filter that can be implemented on the radar system to improve the efficiency of the system and reduce the time that obstruction lights need to be on for by 62.59%, without compromising the integrity of the system.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number IDA @ intern @ Serial 2298  
Permanent link to this record
 

 
Author Jechow, A.; Hölker, F. url  doi
openurl 
  Title How dark is a river? Artificial light at night in aquatic systems and the need for comprehensive night‐time light measurements Type Journal Article
  Year 2019 Publication (down) Wiley Interdisciplinary Reviews: Water Abbreviated Journal WIREs Water  
  Volume 6 Issue 6 Pages e1388  
  Keywords Ecology; Skyglow; Review  
  Abstract Freshwater ecosystems are hotspots of biodiversity. They are of major importance for humans because they provide vital ecosystem services. However, as humans tend to settle near freshwaters and coastal areas, these ecosystems are also over‐proportionally affected by anthropogenic stressors. Artificial light at night can occur as a form of environmental pollution, light pollution. Light pollution affects large areas on a worldwide scale, is growing exponentially in radiance and extent and can have diverse negative effects on flora, fauna and on human health. While the majority of ecological studies on artificial light at night covered terrestrial systems, the studies on aquatic light pollution have unraveled impact on aquatic organisms, ecosystem functions as well as land‐water‐interactions. Although monitoring of light pollution is routinely performed from space and supported by ground‐based measurements, the extent and the amount of artificial light at night affecting water bodies is still largely unknown. This information, however, is essential for the design of future laboratory and field experiments, to guide light planners and to give recommendations for light pollution regulations. We analyze this knowledge gap by reviewing night‐time light measurement techniques and discuss their current obstacles in the context of water bodies. We also provide an overview of light pollution studies in the aquatic context. Finally, we give recommendations on how comprehensive night‐time light measurements in aquatic systems, specifically in freshwater systems, should be designed in the future.  
  Address Ecohydrology, Leibniz‐Institute of Freshwater Ecology and Inland Fisheries, Berlin, Germany; andreas.jechow(at)gmx.de  
  Corporate Author Thesis  
  Publisher Wiley Place of Publication Editor  
  Language English Summary Language English Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2049-1948 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number GFZ @ kyba @ Serial 2688  
Permanent link to this record
 

 
Author Robertson, B.A., Horváth, G. url  doi
openurl 
  Title Color polarization vision mediates the strength of an evolutionary trap Type Journal Article
  Year 2018 Publication (down) Wiley Evolutionary Applications Abbreviated Journal  
  Volume In press Issue Pages  
  Keywords Animals  
  Abstract Evolutionary traps are scenarios in which animals are fooled by rapidly changing conditions into preferring poor-quality resources over those that better improve survival and reproductive success. The maladaptive attraction of aquatic insects to artificial sources of horizontally polarized light (e.g., glass buildings, asphalt roads) has become a first model system by which scientists can investigate the behavioral mechanisms that cause traps to occur. We employ this field-based system to experimentally investigate (a) in which portion(s) of the spectrum are polarizationally water-imitating reflectors attractive to nocturnal terrestrial and aquatics insects, and (b) which modern lamp types result in greater attraction in this typical kind of nocturnal polarized light pollution. We found that most aquatic taxa exhibited preferences for lamps based upon their color spectra, most having lowest preference for lamps emitting blue and red light. Yet, despite previously established preference for higher degrees of polarization of reflected light, most aquatic insect families were attracted to traps based upon their unpolarized spectrum. Chironomid midges, alone, showed a preference for the color of lamplight in both the horizontally polarized and unpolarized spectra indicating only this family has evolved to use light in this color range as a source of information to guide its nocturnal habitat selection. These results demonstrate that the color of artificial lighting can exacerbate or reduce its attractiveness to aquatic insects, but that the strength of attractiveness of nocturnal evolutionary traps, and so their demographic consequences, is primarily driven by unpolarized light pollution. This focuses management attention on limiting broad-spectrum light pollution, as well as its intentional deployment to attract insects back to natural habitats.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number NC @ ehyde3 @ Serial 2076  
Permanent link to this record
 

 
Author Truscott, Z.; Booth, D.T.; Limpus, C.J. url  doi
openurl 
  Title The effect of on-shore light pollution on sea-turtle hatchlings commencing their off-shore swim Type Journal Article
  Year 2017 Publication (down) Wildlife Research Abbreviated Journal Wildl. Res.  
  Volume 44 Issue 2 Pages 127  
  Keywords Animals  
  Abstract Context: Off-shore recruitment impairment of sea-turtle hatchlings because of light pollution is a growing concern to conservation of sea-turtle population throughout the world. Studies have focussed on sea-turtle hatchling sea-finding behaviour, and ignored the possible effect that on-shore lighting might have on hatchlings after they have entered the sea.

Aims: We experimentally evaluated the effect that on-shore light pollution has on the swimming behaviour of green turtle hatchlings once they have entered the sea and begun swimming off-shore. We also estimated the decrease in off-shore recruitment of hatchlings as a result of light pollution disruption of the off-shore swim.

Methods: Hatchling misorientation rates were quantified by releasing marked hatchlings to the sea from different land-based locations adjacent to light-polluted beach areas under a variety of environmental conditions. The beach in light-polluted regions was then searched for marked hatchlings returning to shore from the sea.

Key results: Misorientation rates were highest in trials conducted during moonless nights (66.7% of trials had some hatchlings return to shore) and lowest during trials conducted during moonlit nights (no trials had hatchlings return to shore). Green turtle hatchling off-shore recruitment for the entire 2014–15 nesting season at Heron Island was estimated to decrease 1.0 –2.4% as a result of on-shore lights disrupting hatchling off-shore swimming behaviour.

Conclusions: On moonless nights, sea-turtle hatchlings after having successfully completed their journey from nest to sea and entered the sea can be lured back to shore again by shore-based light pollution and, this will decrease their off-shore recruitment success.

Implications: To ensure maximum off-shore recruitment of sea-turtle hatchlings, on-shore light pollution adjacent to nesting beaches needs to be minimised so as to minimise misorientation and disorientation of hatchlings while on the beach and in near-shore waters.
 
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1035-3712 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number GFZ @ kyba @ Serial 2448  
Permanent link to this record
 

 
Author Ashford, O.M. openurl 
  Title A portable cloud searchlight Type Journal Article
  Year 1947 Publication (down) Weather Abbreviated Journal  
  Volume 2 Issue Pages 103-104  
  Keywords Remote Sensing  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number GFZ @ kyba @ Serial 2044  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: