|   | 
Details
   web
Records
Author Ditmer, M.A.; Iannarilli, F.; Tri, A.N.; Garshelis, D.L.; Carter, N.H.
Title Artificial night light helps account for observer bias in citizen science monitoring of an expanding large mammal population Type Journal Article
Year 2021 Publication (down) The Journal of Animal Ecology Abbreviated Journal J Anim Ecol
Volume 90 Issue 2 Pages 330-342
Keywords Animals; Remote sensing; bears; human-wildlife interactions; occupancy model; range expansion; spatial bias; species monitoring
Abstract The integration of citizen scientists into ecological research is transforming how, where, and when data are collected, and expanding the potential scales of ecological studies. Citizen-science projects can provide numerous benefits for participants while educating and connecting professionals with lay audiences, potentially increasing the acceptance of conservation and management actions. However, for all the benefits, collection of citizen-science data is often biased towards areas that are easily accessible (e.g. developments and roadways), and thus data are usually affected by issues typical of opportunistic surveys (e.g. uneven sampling effort). These areas are usually illuminated by artificial light at night (ALAN), a dynamic sensory stimulus that alters the perceptual world for both humans and wildlife. Our goal was to test whether satellite-based measures of ALAN could improve our understanding of the detection process of citizen-scientist-reported sightings of a large mammal. We collected observations of American black bears Ursus americanus (n = 1,315) outside their primary range in Minnesota, USA, as part of a study to gauge population expansion. Participants from the public provided sighting locations of bears on a website. We used an occupancy modelling framework to determine how well ALAN accounted for observer metrics compared to other commonly used metrics (e.g. housing density). Citizen scientists reported 17% of bear sightings were under artificially lit conditions and monthly ALAN estimates did the best job accounting for spatial bias in detection of all observations, based on AIC values and effect sizes ( beta ^ = 0.81, 0.71-0.90 95% CI). Bear detection increased with elevated illuminance; relative abundance was positively associated with natural cover, proximity to primary bear range and lower road density. Although the highest counts of bear sightings occurred in the highly illuminated suburbs of the Minneapolis-St. Paul metropolitan region, we estimated substantially higher bear abundance in another region with plentiful natural cover and low ALAN (up to ~375% increased predicted relative abundance) where observations were sparse. We demonstrate the importance of considering ALAN radiance when analysing citizen-scientist-collected data, and we highlight the ways that ALAN data provide a dynamic snapshot of human activity.
Address School for Environment and Sustainability, University of Michigan, Ann Arbor, MI, USA
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0021-8790 ISBN Medium
Area Expedition Conference
Notes PMID:32895962 Approved no
Call Number GFZ @ kyba @ Serial 3349
Permanent link to this record
 

 
Author Dunn, N.
Title Dark Design: A New Framework for Advocacy and Creativity for the Nocturnal Commons Type Journal Article
Year 2020 Publication (down) The International Journal of Design in Society Abbreviated Journal
Volume 14 Issue 4 Pages 20-30
Keywords Conservation; Darkness; Design; Lighting; Planning; Society
Abstract Urbanization continues to provide habitat for more and more of the planet’s human population. Accompanying this process are the energy, transport, and service infrastructures that support urban life. Enmeshed in these networks is artificial illumination and its unintended consequences. Light pollution, for instance, accounts for a growing global carbon footprint, yet more efficient artificial lighting methods using LEDs have resulted in increasingly higher levels of brightness at night. This is altering natural cycles of light and dark, directly impacting on the circadian rhythms of our bodies and having disastrous effects upon other species and their ecosystems. This issue of critical importance has been referred to by some scientists as a hidden global challenge but the public awareness and understanding of it is negligible. Where is design in addressing such poor performance? The growing problem of how we perceive darkness and the attempts to manage it, typically through artificial illumination, requires new design strategies to create viable alternatives to current pathways. How can we advocate for the “nocturnal commons” when the majority of society does not even know what is disappearing or understand the implications? This article proposes the concept of “Dark Design” to set out a new framework for advocacy and creativity to raise awareness of these complex issues and address them. By bringing together a diverse range of approaches, “Dark Design” seeks to establish a field for emerging principles and practices to design with darkness rather than against it. In doing so, it calls for the important and urgent need for design to commit, act and engage others in the future of our planet, its people, and non-human species.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number UP @ altintas1 @ Serial 3356
Permanent link to this record
 

 
Author Manning, R., Newman, P., Barber, J., Monz, C., Hallo, J., & Lawson, S.
Title Principles for Studying and Managing Natural Quiet and Natural Darkness in National Parks and Other Protected Areas Type Journal Article
Year 2018 Publication (down) The George Wright Forum Abbreviated Journal
Volume 35 Issue 3 Pages 350-362
Keywords Conservation; Planning; Regulation
Abstract A substantial body of research on natural quiet and natural darkness in national

parks, and protected areas more broadly, has been reported in the scientific and professional literature in recent years. However, this literature is widely scattered over many academic and professional journals that cover both the natural and social sciences. To help integrate and synthesize this body of work, we surveyed this diverse literature and collected representative examples in a book (Manning et al. 2018). We conclude our book with a series of principles

that we have distilled to help guide park managers to protect natural quiet and natural darkness. This paper presents those principles.

Much of our book focuses on national parks in the United States, and in the remainder of this paper the phrase “the national parks” refers to them. But we feel that the principles we have derived from our review of the scientific and professional literature on natural quiet and natural darkness apply equally well to a variety of parks and protected areas in the United States and elsewhere.

Natural quiet is generally defined as the sounds of nature uninterrupted by human-caused noise, and natural darkness is darkness unaffected by human-caused light. It is important to note that natural quiet and natural darkness do not necessarily mean absolute quiet or darkness, as the natural world often generates sounds of its own (e.g., birds calling, wind blowing,

rivers rushing) and has sources of illumination (e.g., the glow of celestial bodies and the fluorescence of some plants and animals).
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number IDA @ intern @ Serial 2297
Permanent link to this record
 

 
Author Leise, T.L.; Goldberg, A.; Michael, J.; Montoya, G.; Solow, S.; Molyneux, P.; Vetrivelan, R.; Harrington, M.E.
Title Recurring circadian disruption alters circadian clock sensitivity to resetting Type Journal Article
Year 2018 Publication (down) The European Journal of Neuroscience Abbreviated Journal Eur J Neurosci
Volume in press Issue Pages
Keywords Animals
Abstract A single phase advance of the light:dark (LD) cycle can temporarily disrupt synchrony of neural circadian rhythms within the suprachiasmatic nucleus (SCN) and between the SCN and peripheral tissues. Compounding this, modern life can involve repeated disruptive light conditions. To model chronic disruption to the circadian system, we exposed male mice to more than a month of a 20 h light cycle (LD10:10), which mice typically cannot entrain to. Control animals were housed under LD12:12. We measured locomotor activity and body temperature rhythms in vivo, and rhythms of PER2::LUC bioluminescence in SCN and peripheral tissues ex vivo. Unexpectedly, we discovered strong effects of the time of dissection on circadian phase of PER2::LUC bioluminescent rhythms, which varied across tissues. White adipose tissue was strongly reset by dissection, while thymus phase appeared independent of dissection timing. Prior light exposure impacted the SCN, resulting in strong resetting of SCN phase by dissection for mice housed under LD10:10, and weak phase shifts by time of dissection in SCN from control LD12:12 mice. These findings suggest that exposure to circadian disruption may desynchronize SCN neurons, increasing network sensitivity to perturbations. We propose that tissues with a weakened circadian network, such as the SCN under disruptive light conditions, or with little to no coupling, e.g., some peripheral tissues, will show increased resetting effects. In particular, exposure to light at inconsistent circadian times on a recurring weekly basis disrupts circadian rhythms and alters sensitivity of the SCN neural pacemaker to dissection time. This article is protected by copyright. All rights reserved.
Address Neuroscience Program, Smith College, Northampton, MA, 01063, USA
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0953-816X ISBN Medium
Area Expedition Conference
Notes PMID:30269396 Approved no
Call Number GFZ @ kyba @ Serial 2036
Permanent link to this record
 

 
Author Vetter, C.
Title Circadian disruption: What do we actually mean? Type Journal Article
Year 2018 Publication (down) The European Journal of Neuroscience Abbreviated Journal Eur J Neurosci
Volume in press Issue Pages in press
Keywords Human Health; Review
Abstract The circadian system regulates physiology and behavior. Acute challenges to the system, such as those experienced during travel across time zones, will eventually result in re-synchronization to the local environmental time cues, but this re-synchronization is oftentimes accompanied by adverse short-term consequences. When such challenges are experienced chronically, adaptation may not be achieved, as for example in the case of rotating night shift workers. The transient and chronic disturbance of the circadian system is most frequently referred to as “circadian disruption”, but many other terms have been proposed and used to refer to similar situations. It is now beyond doubt that the circadian system contributes to health and disease, emphasizing the need for clear terminology when describing challenges to the circadian system and their consequences. The goal of this review is to provide an overview of the terms used to describe disruption of the circadian system, discuss proposed quantifications of disruption in experimental and observational settings with a focus on human research, and highlight limitations and challenges of currently available tools. For circadian research to advance as a translational science, clear, operationalizable, and scalable quantifications of circadian disruption are key, as they will enable improved assessment and reproducibility of results, ideally ranging from mechanistic settings, including animal research, to large-scale randomized clinical trials. This article is protected by copyright. All rights reserved.
Address Department of Integrative Physiology, University of Colorado Boulder, Boulder, CO, USA
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0953-816X ISBN Medium
Area Expedition Conference
Notes PMID:30402904 Approved no
Call Number GFZ @ kyba @ Serial 2057
Permanent link to this record