|   | 
Details
   web
Records
Author Emmer, K.M.; Russart, K.L.G.; Walker, W.H.; Nelson, R.J.; DeVries, A.C.
Title Effects of light at night on laboratory animals and research outcomes Type Journal Article
Year 2018 Publication (up) Behavioral Neuroscience Abbreviated Journal Behav Neurosci
Volume 132 Issue 4 Pages 302-314
Keywords Animals
Abstract Light has substantial influences on the physiology and behavior of most laboratory animals. As such, lighting conditions within animal rooms are potentially significant and often underappreciated variables within experiments. Disruption of the light/dark cycle, primarily by exposing animals to light at night (LAN), disturbs biological rhythms and has widespread physiological consequences because of mechanisms such as melatonin suppression, sympathetic stimulation, and altered circadian clock gene expression. Thus, attention to the lighting environment of laboratory animals and maintaining consistency of a light/dark cycle is imperative for study reproducibility. Light intensity, as well as wavelength, photoperiod, and timing, are all important variables. Although modern rodent facilities are designed to facilitate appropriate light cycling, there are simple ways to modify rooms to prevent extraneous light exposure during the dark period. Attention to lighting conditions of laboratory animals by both researchers and research care staff ensures best practices for maintaining animal welfare, as well as reproducibility of research results. (PsycINFO Database Record
Address Rockefeller Neuroscience Institute, West Virginia University
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0735-7044 ISBN Medium
Area Expedition Conference
Notes PMID:29952608 Approved no
Call Number GFZ @ kyba @ Serial 1957
Permanent link to this record
 

 
Author Souman, J.L.; Tinga, A.M.; Te Pas, S.F.; van Ee, R.; Vlaskamp, B.N.S.
Title Acute alerting effects of light: a systematic literature review Type Journal Article
Year 2018 Publication (up) Behavioural Brain Research Abbreviated Journal Behav Brain Res
Volume 337 Issue Pages 228-239
Keywords Human Health
Abstract Periodic, well timed exposure to light is important for our health and wellbeing. Light, in particular in the blue part of the spectrum, is thought to affect alertness both indirectly, by modifying circadian rhythms, and directly, giving rise to acute effects. We performed a systematic review of empirical studies on direct, acute effects of light on alertness to evaluate the reliability of these effects and to assess to what extent they depend on other factors, such as time of day, exposure duration and sleep pressure. In total, we identified 74 studies in which either light intensity, spectral distribution, or both were manipulated, and the effects on behavioral measures of alertness were evaluated, either subjectively or measured in performance tasks. The results show that increasing the intensity or the color temperature of polychromatic white light in general has been found to increase subjective ratings of alertness, though a substantial proportion of these studies failed to find significant effects. There is little evidence in the literature that these subjective alerting effects of light also translate into improvements on performance measures of alertness. For monochromatic or narrowband light exposure, some studies have shown improvement in reaction time tasks with exposure to blue light, but generally this was not accompanied by changes in subjective alertness. Thus, the alerting effects of light are far less clear than often suggested. We suggest that in future studies more attention should be paid to other factors that may influence the effects of light, such as chronotype, circadian phase, homeostatic state and prior light history.
Address Philips Research (Department Brain, Behavior & Cognition), Eindhoven, The Netherlands
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0166-4328 ISBN Medium
Area Expedition Conference
Notes PMID:28912014 Approved no
Call Number LoNNe @ kyba @ Serial 1727
Permanent link to this record
 

 
Author Datta, S.; Samanta, D.; Tiwary, B.; Chaudhuri, A.G.; Chakrabarti, N.
Title Sex and estrous cycle dependent changes in locomotor activity, anxiety and memory performance in aged mice after exposure of light at night Type Journal Article
Year 2019 Publication (up) Behavioural Brain Research Abbreviated Journal Behav Brain Res
Volume 365 Issue Pages 198-209
Keywords Animals; mouse models; locomotor activities
Abstract Light-at-night (LAN) can affect mammalian behaviour. But, the effects of LAN on aged rodents remain undefined yet. In the present investigation, aged Swiss Albino mice, habituated in regular light-dark cycle, were exposed to bright-light-pulse (1-hr) at night on the day of study followed by experimentations for assessment of locomotor activities in the open field, anxiety in the elevated plus maze and short-term memory for novel object recognition (NOR) in the habituated field. Under without-bright-light exposure, (a) aged proestrous females showed greater locomotor activities and less anxiety than in aged diestrous females, (b) aged males showed locomotor activities and anxiety level similar to aged diestrous females and aged proestrous females respectively and (c) all animals failed to retain in object discrimination memory. LAN exposure exhibited the continual failure of such retention of memory while animals showed free and spontaneous exploration with thigmotactic behaviour having no object bias and/or phobia, but time stay in objects by animals altered variably among sexes and stages of estrous cycle. Overall, the LAN caused (a) diminution in locomotor activities, rise in anxiety and failure of memory for recognition of both familiar and novel objects in aged proestrous females, (b) hyperlocomotor activities and reduction in anxiety in both males and diestrous females with the failure of memory for recognition of novel objects only in aged males while diestrous females showed enhanced exploration time to both objects during NOR. Thus, nocturnal behaviour of aged mice varies with sex and estrous cycle and light acts differentially on them.
Address University of Calcutta, Department of Physiology, 92, APC Road, Kolkata, 700009, West Bengal, India. Electronic address: ncphysiolcu@gmail.com
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0166-4328 ISBN Medium
Area Expedition Conference
Notes PMID:30853396 Approved no
Call Number GFZ @ kyba @ Serial 2259
Permanent link to this record
 

 
Author Chen, R.; Weitzner, A.S.; McKennon, L.A.; Fonken, L.K.
Title Light at night during development in mice has modest effects on adulthood behavior and neuroimmune activation Type Journal Article
Year 2021 Publication (up) Behavioural Brain Research Abbreviated Journal Behav Brain Res
Volume Issue Pages 113171
Keywords Animals; adolescence; circadian; hippocampus; light at night; mood; neuroinflammation
Abstract Exposure to light at night (LAN) can disrupt the circadian system, thereby altering neuroimmune reactivity and related behavior. Increased exposure to LAN affects people of all ages – and could have particularly detrimental effects during early-life and adolescence. Despite this, most research on the behavioral and physiological effects of LAN has been conducted in adult animals. Here we evaluated the effects of dim LAN during critical developmental windows on adulthood neuroimmune function and affective/sickness behaviors. Male and female C57BL/6 J mice were exposed to dim LAN [12:12 light (150 lux)/dim (15 lux) cycle] during early life (PND10-24) or adolescence (PND30-44) [control: 12:12 light (150 lux)/dark (0 lux) cycle]. Behaviors were assessed during juvenile (PND42-44) and adult (PND60) periods. Contrary to our hypothesis, juvenile mice that were exposed to dim LAN did not exhibit changes in anxiety- or depressive-like behaviors. By adulthood, adolescent LAN-exposed female mice showed a modest anxiety-like phenotype in one behavioral task but not another. Adolescent LAN exposure also induced depressive-like behavior in a forced swim task in adulthood in both male and female mice. Additionally, developmental LAN exacerbated the hippocampal cytokine response (IL-1beta) following peripheral LPS in female, but not male mice. These results suggest female mice may be more susceptible to developmental LAN than male mice: LAN female mice had a modest anxiety-like phenotype in adulthood, and upon LPS challenge, higher hippocampal IL-1beta expression. Taken together, developmental LAN exposure in mice promotes a modest increase in susceptibility to anxiety- and depressive-like symptoms.
Address Division of Pharmacology and Toxicology, University of Texas at Austin, Austin, TX 78712, USA. Electronic address: laura.fonken@austin.utexas.edu
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0166-4328 ISBN Medium
Area Expedition Conference
Notes PMID:33577883 Approved no
Call Number GFZ @ kyba @ Serial 3367
Permanent link to this record
 

 
Author Lopes, A.C.C.; Villacorta-Correa, M.A.; Carvalho, T.B.
Title Lower light intensity reduces larval aggression in matrinxã, Brycon amazonicus Type Journal Article
Year 2018 Publication (up) Behavioural Processes Abbreviated Journal Behavioural Processes
Volume 151 Issue Pages 62-66
Keywords Animals
Abstract Brycon amazonicus shows a high frequency of aggressive behavior, which can be a limiting factor in intensive farming systems. Environmental changes can modulate the social interactions of fish and reduce aggression during the different stages of production. Groups of three larvae at 12 h after hatching (HAH) were subjected to different levels of light intensity: low (17 ± 3 lx), intermediate (204 ± 12.17 lx) and high (1,613.33 ± 499.03 lx), with eight replicates for each level. The lower light intensity reduced the frequency of aggressive interactions and locomotor activity exhibited by the animals. Based on these results, light intensity modulates aggression in B. amazonicus larvae. Manipulation of this factor could improve the social conditions of this species during farming and contribute to the development of new production technologies.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0376-6357 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number LoNNe @ kyba @ Serial 1810
Permanent link to this record