|   | 
Details
   web
Records
Author Markvica, K.; Richter, G.; Lenz, G.
Title Impact of urban street lighting on road users’ perception of public space and mobility behavior Type Journal Article
Year 2019 Publication (up) Building and Environment Abbreviated Journal Building and Environment
Volume 154 Issue Pages 32-43
Keywords Lighting; Psychology
Abstract Refitting public spaces with light-emitting diode (LED) technology in lieu of conventional luminaires bears the risk of compromising lighting quality that road users have already adapted to; this is because the LED technology has been well tested indoors, but it has not been necessarily evaluated outdoors. Further insight into the effects of street lighting on road users is necessary to resolve potential deficiencies of available technologies. This study compares the effects of three different lighting scenarios (conventional lighting, state-of-the-art LED, optimized LED) on road users via surveys (N = 598 persons) and observations (N = 1341 persons) in the city of Vienna. In terms of the uniformity of street illumination and the comfort it provides, the results show the positive effects of LED street lighting both on surveyed pedestrians and vehicle drivers. The observations of pedestrian walking behavior revealed an unexpected result—no significant differences were noted apart from a more centric walking path along the sidewalk under LED illumination, particularly with the optimized LED luminaire.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0360-1323 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number GFZ @ kyba @ Serial 2335
Permanent link to this record
 

 
Author Gaydecki, P.
Title Automated moth flight analysis in the vicinity of artificial light Type Journal Article
Year 2018 Publication (up) Bulletin of Entomological Research Abbreviated Journal Bull Entomol Res
Volume 109 Issue 1 Pages 127-140
Keywords Instrumentation; Animals
Abstract Instrumentation and software for the automated analysis of insect flight trajectories is described, intended for quantifying the behavioural dynamics of moths in the vicinity of artificial light. For its time, this moth imaging system was relatively advanced and revealed hitherto undocumented insights into moth flight behaviour. The illumination source comprised a 125 W mercury vapour light, operating in the visible and near ultraviolet wavelengths, mounted on top of a mobile telescopic mast at heights of 5 and 7.1 m, depending upon the experiment. Moths were imaged in early September, at night and in field conditions, using a ground level video camera with associated optics including a heated steering mirror, wide angle lens and an electronic image intensifier. Moth flight coordinates were recorded at a rate of 50 images per second (fields) and transferred to a computer using a light pen (the only non-automated operation in the processing sequence). Software extracted ground speed vectors and, by instantaneous subtraction of wind speed data supplied by fast-response anemometers, the airspeed vectors. Accumulated density profiles of the track data revealed that moths spend most of their time at a radius of between 40 and 50 cm from the source, and rarely fly directly above it, from close range. Furthermore, the proportion of insects caught by the trap as a proportion of the number influenced by the light (and within the field of view of the camera) was very low; of 1600 individual tracks recorded over five nights, a total of only 12 were caught. Although trap efficiency is strongly dependent on trap height, time of night, season, moonlight and weather, the data analysis confirmed that moths do not exhibit straightforward positive phototaxis. In general, trajectory patterns become more complex with reduced distance from the illumination, with higher recorded values of speeds and angular velocities. However, these characteristics are further qualified by the direction of travel of the insect; the highest accelerations tended to occur when the insect was at close range, but moving away from the source. Rather than manifesting a simple positive phototaxis, the trajectories were suggestive of disorientation. Based on the data and the complex behavioural response, mathematical models were developed that described ideal density distribution in calm air and light wind speed conditions. The models did not offer a physiological hypothesis regarding the behavioural changes, but rather were tools for quantification and prediction. Since the time that the system was developed, instrumentation, computers and software have advanced considerably, allowing much more to be achieved at a small fraction of the original cost. Nevertheless, the analytical tools remain useful for automated trajectory analysis of airborne insects.
Address School of Electrical and Electronic Engineering, University of Manchester,Manchester M13 9PL,UK
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0007-4853 ISBN Medium
Area Expedition Conference
Notes PMID:29745349 Approved no
Call Number GFZ @ kyba @ Serial 1895
Permanent link to this record
 

 
Author Kim, K.-N.; Jo, Y.-C.; Huang, Z.-J.; Song, H.-S.; Ryu, K.-H.; Huang, Q.-Y.; Lei, C.-L.
Title Influence of green light illumination at night on biological characteristics of the oriental armyworm, Mythimna separata (Lepidoptera: Noctuidae) Type Journal Article
Year 2019 Publication (up) Bulletin of Entomological Research Abbreviated Journal Bull Entomol Res
Volume in press Issue Pages S0007485319000397
Keywords Animals; Mythimna separata; biological characteristic; green light; longevity; reproduction
Abstract The oriental armyworm, Mythimna separata is an important crop pest in eastern Asia. Nocturnal insects, including nocturnal moths, have phototactic behavior to an artificial light source. Phototactic behavior in insects is species-specific in response to different wavelengths of light sources. Our previous study showed that green (520 nm) light emitting diode (LED) light resulted in a significantly higher phototactic behavior in M. separata moths compared to the other wavelength LED lights. The goal of the present study is to investigate the influence of green light illumination on biological characteristics of different developmental stages in M. separata. Our results revealed that when different developmental stages of M. separata were exposed to the green light illumination in a dark period, several biological characteristics in all developmental stages except for egg stage were positively changed, but those of F1 generation M. separata which are next generation of the adults exposed to the green light did not significantly change compared with the control level. These findings suggest that green light illumination at night (or dark period) has a positive effect on the development and longevity of M. separata.
Address Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, College of Plant Science and Technology, Huazhong Agricultural University,Wuhan, Hubei,China
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0007-4853 ISBN Medium
Area Expedition Conference
Notes PMID:31203829 Approved no
Call Number GFZ @ kyba @ Serial 2585
Permanent link to this record
 

 
Author Bowden, J.
Title An Analysis of Factors Affecting Catches of Insects in Light-Traps Type Journal Article
Year 1982 Publication (up) Bulletin of Entomological Research Abbreviated Journal Bull. Entomol. Res.
Volume 72 Issue 4 Pages 535-556
Keywords Ecology; Animals
Abstract Analysis of published data on catches of insects in light-traps with a variety of light sources and of different designs showed that all conformed to the previously proposed model describing the functioning of a light-trap: catch = constant × where W = trap illumination and I = background illumination. Light-trap catches in differing cloud conditions and in open and woodland situations also varied as predicted by the model. A table of correction factors for different amounts of cloud cover is provided. The results are discussed in relation to use of light-traps and interpretation of light-trap data.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0007-4853 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number GFZ @ kyba @ Serial 2589
Permanent link to this record
 

 
Author Blagonravov, M.L.; Bryk, A.A.; Medvedeva, E.V.; Goryachev, V.A.; Chibisov, S.M.; Kurlaeva, A.O.; Agafonov, E.D.
Title Structure of Rhythms of Blood Pressure, Heart Rate, Excretion of Electrolytes, and Secretion of Melatonin in Normotensive and Spontaneously Hypertensive Rats Maintained under Conditions of Prolonged Daylight Duration Type Journal Article
Year 2019 Publication (up) Bulletin of Experimental Biology and Medicine Abbreviated Journal Bull Exp Biol Med
Volume 168 Issue 1 Pages 18-23
Keywords Animals; arterial hypertension; biological rhythms; excessive exposure to light; melatonin
Abstract We studied the structure of rhythms of BP, HR (by telemetric monitoring), electrolyte excretion (by capillary electrophoresis), and products of epiphyseal melatonin (by the urinary concentration of 6-sulfatoxymelatonin measured by ELISA) in normotensive Wistar-Kyoto rats and spontaneously hypertensive SHR rats maintained at 16/8 h and 20/4 h light-dark regimes. In Wister-Kyoto rats exposed to prolonged daylight, we observed changes in the amplitude, rhythm power (% of rhythm), and range of oscillations of systolic BP; HR mezor decreased. In SHR rats, mezor of HR also decreased, but other parameters of rhythms remained unchanged. Changes in electrolyte excretion were opposite in normo- and hypertensive rats. Under conditions of 20/4 h light-dark regime, daytime melatonin production tended to increase in normotensive rats and significantly increased in SHR rats. At the same time, nighttime melatonin production did not change in both normotensive and hypertensive animals. As the secretion of melatonin has similar features in animals of both lines, we can say that the epiphyseal component of the “biological clock” is not the only component of the functional system that determines the response of the studied rhythms to an increase in the duration of light exposure.
Address V. A. Frolov Department of General Pathology and Pathophysiology, Institute for Medicine, Peoples' Friendship University of Russia, Moscow, Russia
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0007-4888 ISBN Medium
Area Expedition Conference
Notes PMID:31741240 Approved no
Call Number GFZ @ kyba @ Serial 2755
Permanent link to this record