Home | << 1 2 3 4 5 6 7 8 9 10 >> [11–20] |
![]() |
Records | |||||
---|---|---|---|---|---|
Author | Schröter-Schlaack, C.; Schulte-Römer, N.; Revermann, C. | ||||
Title | Lichtverschmutzung – Ausmaß, gesellschaftliche und ökologische Auswirkungen sowie Handlungsansätze | Type | Report | ||
Year | 2020 | Publication ![]() |
Abbreviated Journal | ||
Volume | 186 | Issue | Pages | 1-200 | |
Keywords | Review; Skyglow; Ecology; Human Health; Lighting; Public Safety; Remote Sensing | ||||
Abstract | Künstliches Licht kann als eine der größten technischen Errungenschaften der Menschheit angesehen werden, die erhebliche Veränderungen bzw. Fortschritte der Arbeits- und Lebensweisen ermöglichen. Mit künstlicher Beleuchtung wird aber auch der natürliche Rhythmus von Tag und Nacht verändert und damit das Gesamtgefüge des Naturhaushaltes und der Nachtlandschaft transformiert. Ein natürlich dunkler Nachthimmel ist in Deutschland selten geworden. Licht-glocken über urbanen Gebieten sind weit weg von ihrem Entstehungsort in unbeleuchteten Gebieten noch sichtbar und lassen Sterne und die Milchstraße unkenntlich werden. Nicht nur das direkte elektrische Licht erleuchtet unsere Umwelt, sondern auch der nach oben abgestrahlte und reflektierte Teil des Lichts. Schichten der Atmosphäre, Staub oder Wassertropfen reflektieren und streuen das Licht. Dieser auch als Skyglow bezeichnete Effekt bewirkt eine zusätzliche Erhellung. Neben dieser künstlich erhöhten Himmelshelligkeit kann Licht auch die direkte Umgebung ungewollt aufhellen oder durch Blendung das Sehen einschränken. Licht ist ein wichtiger externer Zeitgeber für die innere Uhr der Lebewesen, an dessen natürlichen Rhythmus sich Menschen, Tiere und Pflanzen über Jahrhunderte angepasst haben. So wird vermutet, dass die permanent und periodisch veränderten Lichtverhältnisse durch zunehmende künstliche Beleuchtung negative Auswirkungen auf die menschliche Gesundheit haben und ebenso zu ökologischen Beeinträchtigungen führen.All diese nichtintendierten Wirkungen der künstlichen Beleuchtung werden unter dem Sammelbegriff Lichtverschmutzung verstanden. Lichtverschmutzung ist hier definiert als unerwünschte Wirkung künstlicher Beleuchtung im Außenbereich, also das Licht, das räumlich (Richtung und Fläche), zeitlich (Tages- und Jahreszeit, Dauer, Periodizität) oder in der Intensität oder spektralen Zusammensetzung (z.B. Ultraviolett- oder Blauanteil) über den reinen Beleuchtungszweck hinaus nicht beabsichtigte Auswirkungen hat (Kuechly et al. 2018). Mit dem vorliegenden Bericht werden der wissenschaftliche Erkenntnis-stand im Hinblick auf Umfang und Trends der Lichtverschmutzung sowie ihre wirtschaftlichen und soziokulturellen, humanmedizinischen und ökologischen Wirkungen zusammengefasst. Auf Basis dieser Erkenntnisse und aktueller beleuchtungstechnologischer und lichtplanerischer Möglichkeiten werden Handlungsoptionen abgeleitet, die eine Verringerung der Lichtverschmutzung bei gleichzeitiger Berücksichtigung der nutzbringenden Ziele der Beleuchtung unterstützen können. | ||||
Address | |||||
Corporate Author | Thesis | ||||
Publisher | Büro für Technikfolgen-Abschätzung beim Deutschen Bundestag (TAB) | Place of Publication | Editor | ||
Language | German | Summary Language | Original Title | ||
Series Editor | Series Title | Abbreviated Series Title | |||
Series Volume | Series Issue | Edition | |||
ISSN | ISBN | Medium | |||
Area | Expedition | Conference | |||
Notes | Approved | no | |||
Call Number | GFZ @ kyba @ | Serial | 3058 | ||
Permanent link to this record | |||||
Author | Roach, F.E.; Gordon, J.L. | ||||
Title | The Light of the Night Sky | Type | Book Whole | ||
Year | 1973 | Publication ![]() |
Abbreviated Journal | ||
Volume | Issue | Pages | |||
Keywords | Natural Sky Brightness; Airglow | ||||
Abstract | Astronomy appears to us as a combination of art, science, and philosophy. Its study puts the universe into perspective, giving a sense of pleasure in its beauty, awe at its immensity, and humility at our trivial place in it. From earliest human history, man has scrutinized the night sky – and wondered and marveled. With unaided eye but perceptive mind, he recognized order in the regular appearance and movements of individual objects, such as the planets and star groups (constellations), in their rhythmic and majestic progressions across the bowl of night. Even in the present era of scientific exactitude, there remains a profound awareness of mysteries beyond our present interpretations. It is only in comparatively recent years, however, that man has recognized that it takes more than conventional astronomy to account for the beauties ofthe night sky. Radiations in the Earth's upper atmosphere provide a foreground light, the study of which has come under a new name, aeronomy. The science of aeronomy has rapidly burgeoned, and the student of the light of the night sky finds that he is involved in an interdisciplinary domain. The 'meat' of one discipline, however, may be the 'poison' of the other. To the astronomer, the Earth's atmosphere, inhibiting his extra-terrestrial viewing, is a serious nuisance. To the aeronomer, the Moon, planets, stars, and Galaxies hamper his measurements and interfere with his studies of the Earth's upper atmosphere. Yet both sets of elements are basic to the beauties as well as to the understanding of the light of the night sky. It is essentially the students of astronomy and aeronomy for whom we have written this book. We also hope, however, that it will present much of interest and value to the bemused sky watcher, for whom some detailed knowledge of the several con-tried to meld these dual objectives to create a broadly based, professionally valid tributors to the nighttinie sky may increase his pleasure in contemplating it. We have treatise that will lead the serious student to deeper probing into the phenomena and will inspire both him and the enthusiastic amateur to an appreciation of that half of their experience which we may refer to as their 'night life'. | ||||
Address | |||||
Corporate Author | Thesis | ||||
Publisher | Reidel Publishing Company | Place of Publication | Dordrecht, Holland | Editor | |
Language | Summary Language | Original Title | |||
Series Editor | Series Title | Abbreviated Series Title | |||
Series Volume | Series Issue | Edition | |||
ISSN | ISBN | Medium | |||
Area | Expedition | Conference | |||
Notes | Approved | no | |||
Call Number | GFZ @ kyba @ | Serial | 3125 | ||
Permanent link to this record | |||||
Author | Walczak, K.; Crim, G.; Gesite, T.; Habtemichael, S.; Morgan, J.; Tarr, C.; Turkic, L.; Wiedemann, J. | ||||
Title | The GONet (Ground Observing Network) Camera: An Inexpensive Light Pollution Monitoring System | Type | Report | ||
Year | 2020 | Publication ![]() |
Abbreviated Journal | ||
Volume | preprint | Issue | Pages | ||
Keywords | Instrumentation; GONet; Light pollution; All-sky imaging; Sky brightness; Monitoring | ||||
Abstract | Instrumentation developed to monitor and characterize light pollution from the ground has helped frame our understanding of the impacts of artificial light at night (ALAN) [Bará, Lima, & Zamorano, 2019; Hänel et al., 2018; Zamorano et al., 2017]. All-sky imaging has been used to quantify and characterize ALAN in a variety of environments [D. M. Duriscoe, 2016; Jechow, Kyba, & Hölker, 2019]. Over the past decade growth in access to DIY electronics has afforded the opportunity for the development of new and affordable instrumentation for ALAN research. The GONet (Ground Observing Network) camera is an inexpensive (~USD 100), simple to use, all-sky imaging system designed to allow measurements of sky quality at night. Due to their ease of use and low price, GONet cameras allow observations by users with little technical expertise, large inter-comparison campaigns and deployments of opportunity. Developed as a student engineering project at the Adler Planetarium, initial field tests of the GONet system have demonstrated its utility as a tool that can benefit ALAN research. Here we present an overview of the design and use of the GONet device, methods of calibration, initial results from observations, potential use cases, and limitations of the system. What we describe here is the version 1 GONet camera. We conclude with a brief description of the version 2 unit already under development. |
||||
Address | Adler Planetarium, Chicago, Illinois 60605, USA; kwalczak ( at ) adlerplanetarium.org | ||||
Corporate Author | Thesis | ||||
Publisher | Place of Publication | Editor | |||
Language | English | Summary Language | English | Original Title | |
Series Editor | Series Title | Abbreviated Series Title | |||
Series Volume | Series Issue | Edition | |||
ISSN | ISBN | Medium | |||
Area | Expedition | Conference | |||
Notes | Approved | no | |||
Call Number | IDA @ john @ | Serial | 3305 | ||
Permanent link to this record | |||||
Author | Ringwald, R.; Rönitzsch, H.; Riedel, M. | ||||
Title | Praxishandbuch Öffentliche Beleuchtung – Wirtschaftlichkeit, Recht, Technik | Type | Journal Article | ||
Year | 2013 | Publication ![]() |
1. Aufl. DIN Deutsches Institut für Normung e.V., hrsg., Berlin Wien Zürich: Beuth Verlags GmbH. | Abbreviated Journal | |
Volume | Issue | Pages | |||
Keywords | Lighting | ||||
Abstract | |||||
Address | |||||
Corporate Author | Thesis | ||||
Publisher | Place of Publication | Editor | |||
Language | Summary Language | Original Title | |||
Series Editor | Series Title | Abbreviated Series Title | |||
Series Volume | Series Issue | Edition | |||
ISSN | ISBN | Medium | |||
Area | Expedition | Conference | |||
Notes | Approved | no | |||
Call Number | LoNNe @ kagoburian @ | Serial | 1058 | ||
Permanent link to this record | |||||
Author | Pack, D. W., Coffman, C. M., & Santiago, J. R. | ||||
Title | A Year in Space for the CUbesat MULtispectral Observing System: CUMULOS | Type | Conference Article | ||
Year | 2019 | Publication ![]() |
33rd Annual AIAA/USU Conference on Small Satellites | Abbreviated Journal | |
Volume | SSC19-XI-01 | Issue | Pages | ||
Keywords | Remote Sensing | ||||
Abstract | CUMULOS is a three-camera system flying as a secondary payload on the Integrated Solar Array and Reflectarray Antenna (ISARA) mission with the goals of researching the use of uncooled commercial infrared cameras for Earth remote sensing and demonstrating unique nighttime remote sensing capabilities. Three separate cameras comprise the CUMULOS payload: 1) a visible (VIS) Si CMOS camera, 2) a shortwave infrared (SWIR) InGaAs camera, and 3) a longwave infrared (LWIR) vanadium oxide microbolometer. This paper reviews on-orbit operations during the past year, in-space calibration observations and techniques, and Earth remote sensing highlights from the first year of space operations. CUMULOS operations commenced on 8 June 2018 following the successful completion of the primary ISARA mission. Some of the unique contributions from the CUMULOS payloads include: 1) demonstrating the use of bright stars for on-orbit radiometric calibration of CubeSat payloads, 2) acquisition of science-quality nighttime lights data at 130-m resolution, and 3) operating the first simple Earth observing infrared payloads successfully flown on a CubeSat. Sample remote sensing results include images of: cities at night, ship lights (including fishing vessels), oil industry gas flares, serious wildfires, volcanic activity, and daytime and nighttime clouds. The CUMULOS VIS camera has measured calibrated nightlights imagery of major cities such as Los Angeles, Singapore, Shanghai, Tokyo, Kuwait City, Abu Dhabi, Jeddah, Istanbul, and London at more than 5x the resolution of VIIRS. The utility of these data for measuring light pollution, and mapping urban growth and infrastructure development at higher resolution than VIIRS is being studied, with an emphasis placed on Los Angeles. The “Carr”, “Camp” and “Woolsey” fires from the 2018 California fire season were imaged with all three cameras and results highlight the excellent wildfire imaging performance that can be achieved by small sensors. The SWIR camera has exhibited extreme sensitivity to flare and fire hotspots, and was even capable of detecting airglow-illuminated nighttime cloud structures by taking advantage of the strong OH emissions within its 0.9-1.7 micron bandpass. The LWIR microbolometer has proven successful at providing cloud context imagery for our nightlights mapping experiments, can detect very large fires and the brightest flare hotspots, and can also image terrain temperature variation and urban heat islands at 300-m resolution. CUMULOS capabilities show the potential of CubeSats and small sensors to perform several VIIRS-like nighttime mission areas in which wide area coverage can be traded for greater resolution over a smaller field of view. The sensor has been used in collaboration with VIIRS researchers to explore these mission areas and side-by-side results will be presented illustrating the capabilities as well as the limitations of small aperture LEO CubeSat systems. |
||||
Address | |||||
Corporate Author | Thesis | ||||
Publisher | Place of Publication | Editor | |||
Language | Summary Language | Original Title | |||
Series Editor | Series Title | Abbreviated Series Title | |||
Series Volume | Series Issue | Edition | |||
ISSN | ISBN | Medium | |||
Area | Expedition | Conference | |||
Notes | Approved | no | |||
Call Number | IDA @ intern @ | Serial | 2736 | ||
Permanent link to this record |