toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Lao, S.; Robertson, B.A.; Anderson, A.W.; Blair, R.B.; Eckles, J.W.; Turner, R.J.; Loss, S.R. url  doi
openurl 
  Title The influence of artificial night at night and polarized light on bird-building collisions Type Journal Article
  Year 2020 Publication (up) Biological Conservation Abbreviated Journal Biological Conservation  
  Volume 241 Issue Pages 108358  
  Keywords Animals  
  Abstract Collisions with buildings annually kill up to 1 billion birds in the United States. Bird-building collisions primarily occur at glass surfaces: birds often fail to perceive glass as a barrier and appear to be attracted to artificial light emitted from windows. However, some aspects of avian vision are poorly understood, including how bird responses to different types of light influence building collisions. Some evidence suggests birds can detect polarized light, which may serve as a cue to assist with migration orientation and/or detect water bodies. Dark, reflective surfaces, including glass, reflect high degrees of polarized light, causing polarized light pollution (PLP). However, no studies have analyzed the relationship between bird collisions and PLP reflected from buildings. Additionally, while artificial light at night (ALAN) is frequently implicated as a major factor influencing bird-building collisions, few studies have analyzed this relationship. We investigated both types of light pollution—PLP and ALAN—and their association with bird collisions at 48 façades of 13 buildings in Minneapolis, Minnesota, USA. We found that the area of glass emitting ALAN was the most important factor influencing collisions, and that this effect of ALAN was independent of overall glass area; this result provides strong support for turning off lights at night to reduce bird-building collisions. Although we found no relationship between PLP and collisions, additional research is needed to better understand bird responses to polarized light. Fully understanding how different aspects of light influence bird-building collisions can inform conservation efforts to reduce this major threat to birds.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0006-3207 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number GFZ @ kyba @ Serial 2757  
Permanent link to this record
 

 
Author Bielli, A.; Alfaro-Shigueto, J.; Doherty, P.D.; Godley, B.J.; Ortiz, C.; Pasara, A.; Wang, J.H.; Mangel, J.C. url  doi
openurl 
  Title An illuminating idea to reduce bycatch in the Peruvian small-scale gillnet fishery Type Journal Article
  Year 2019 Publication (up) Biological Conservation Abbreviated Journal Biological Conservation  
  Volume in press Issue Pages 108277  
  Keywords Animals; oceans; bycatch; artificial illumination; bycatch reduction technologies  
  Abstract Found in the coastal waters of all continents, gillnets are the largest component of small-scale fisheries for many countries. Numerous studies show that these fisheries often have high bycatch rates of threatened marine species such as sea turtles, small cetaceans and seabirds, resulting in possible population declines of these non-target groups. However, few solutions to reduce gillnet bycatch have been developed. Recent bycatch reduction technologies (BRTs) use sensory cues to alert non-target species to the presence of fishing gear. In this study we deployed light emitting diodes (LEDs) – a visual cue – on the floatlines of paired gillnets (control vs illuminated net) during 864 fishing sets on small-scale vessels departing from three Peruvian ports between 2015 and 2018. Bycatch probability per set for sea turtles, cetaceans and seabirds as well as catch per unit effort (CPUE) of target species were analysed for illuminated and control nets using a generalised linear mixed-effects model (GLMM). For illuminated nets, bycatch probability per set was reduced by up to 74.4 % for sea turtles and 70.8 % for small cetaceans in comparison to non-illuminated, control nets. For seabirds, nominal BPUEs decreased by 84.0 % in the presence of LEDs. Target species CPUE was not negatively affected by the presence of LEDs. This study highlights the efficacy of net illumination as a multi-taxa BRT for small-scale gillnet fisheries in Peru. These results are promising given the global ubiquity of small-scale net fisheries, the relatively low cost of LEDs and the current lack of alternate solutions to bycatch.  
  Address Centre for Ecology and Conservation, University of Exeter, Penryn, Cornwall, TR10 9FE, UK; bielli.alessandra(at)gmail.com  
  Corporate Author Thesis  
  Publisher Elsevier Place of Publication Editor  
  Language English Summary Language English Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0006-3207 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number GFZ @ kyba @ Serial 2779  
Permanent link to this record
 

 
Author Cochard, P.; Galstian, T.; Cloutier, C. url  doi
openurl 
  Title The proportion of blue light affects parasitoid wasp behavior in LED-extended photoperiod in greenhouses: Increased parasitism and offspring sex ratio bias Type Journal Article
  Year 2019 Publication (up) Biological Control Abbreviated Journal Biological Control  
  Volume 133 Issue Pages 9-17  
  Keywords Animals  
  Abstract The increasing use of specific wavelengths involving light-emitting diodes (LEDs) under greenhouses enables to overcome the lack of light during winter months, helping crops photosynthesis or vegetative growth. However, modification of the light environment as well as the photoperiod may also alter directly or indirectly the activity of both beneficial and pest insects that depend on plants. Here, we submitted the parasitic wasp Aphidius ervi and its main host the pea aphid, to 4 ratios of red(R): blue(B) LEDs used to lengthen the photoperiod inside a growth chamber. We recorded the parasitism rate of aphids and the sex ratio of newly emerged wasps to evaluate if A. ervi could remain an efficient biological control agent under modified light environments. We found that increasing the 8 h of photophase to 16 h by supplementing with R/B LEDs increased the daily parasitic activity of the wasp as well as their egg laying behavior. Under the 100R light supplement, about 80% of the emerged adults were males, against 50% under 25R:75B light treatment. These results indicate that A. ervi remains a good biological control agent when the light environment is modified. However, the use of red light to extend the photophase has the potential to negatively affect population dynamics of these parasitoids due to its male-bias impact on the sex ratio.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1049-9644 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number GFZ @ kyba @ Serial 2253  
Permanent link to this record
 

 
Author Hunter, C.M.; Figueiro, M.G. url  doi
openurl 
  Title Measuring Light at Night and Melatonin Levels in Shift Workers: A Review of the Literature Type Journal Article
  Year 2017 Publication (up) Biological Research for Nursing Abbreviated Journal Biol Res Nurs  
  Volume 19 Issue 4 Pages 365-374  
  Keywords Human Health; Review  
  Abstract Shift work, especially that involving rotating and night shifts, is associated with an increased risk of diseases, including cancer. Attempts to explain the association between shift work and cancer in particular have focused on the processes of melatonin production and suppression. One hypothesis postulates that exposure to light at night (LAN) suppresses melatonin, whose production is known to slow the development of cancerous cells, while another proposes that circadian disruption associated with shift work, and not just LAN, increases health risks. This review focuses on six studies that employed quantitative measurement of LAN and melatonin levels to assess cancer risks in shift workers. These studies were identified via searching the PubMed database for peer-reviewed, English-language articles examining the links between shift work, LAN, and disease using the terms light at night, circadian disruption, health, risk, cancer, shift work, or rotating shift. While the results indicate a growing consensus on the relationship between disease risks (particularly cancer) and circadian disruption associated with shift work, the establishment of a direct link between LAN and disease has been impeded by contradictory studies and a lack of consistent, quantitative methods for measuring LAN in the research to date. Better protocols for assessing personal LAN exposure are required, particularly those employing calibrated devices that measure and sample exposure to workplace light conditions, to accurately assess LAN's effects on the circadian system and disease. Other methodologies, such as measuring circadian disruption and melatonin levels in the field, may also help to resolve discrepancies in the findings.  
  Address 1 Lighting Research Center, Rensselaer Polytechnic Institute, Troy, NY, USA  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1099-8004 ISBN Medium  
  Area Expedition Conference  
  Notes PMID:28627309; PMCID:PMC5862149 Approved no  
  Call Number GFZ @ kyba @ Serial 2458  
Permanent link to this record
 

 
Author Rowan, W. url  doi
openurl 
  Title Light And Seasonal Reproduction In Animals Type Journal Article
  Year 1938 Publication (up) Biological Reviews Abbreviated Journal Biological Reviews  
  Volume 13 Issue 4 Pages 374-401  
  Keywords Animals  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1464-7931 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number GFZ @ kyba @ Serial 2395  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: