toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Apostol, K.; Dumroese, R.K.; Pinto, J.R.; Davis, A.S. url  doi
openurl 
  Title Response of conifer species from three latitudinal populations to light spectra generated by light-emitting diodes and high-pressure sodium lamps Type Journal Article
  Year 2015 Publication (up) Canadian Journal of Forest Research Abbreviated Journal Can. J. For. Res.  
  Volume 45 Issue 12 Pages 1711-1719  
  Keywords plants  
  Abstract Light-emitting diode (LED) technology shows promise for supplementing photosynthetically active radiation (PAR) in forest nurseries because of the potential reduction in energy consumption and an ability to supply discrete wavelengths to optimize seedling growth. Our objective was to examine the effects of light spectra supplied by LED and traditional high-pressure sodium (HPS) lamps on growth and physiology of Pseudotsuga menziesii (Douglas-fir) and Picea engelmannii (Engelmann spruce) seedlings. We used three latitudinal sources for each species: British Columbia (BC), Idaho (ID), and New Mexico (NM). Container seedlings were grown for 17 weeks in the greenhouse under an 18-h photoperiod of ambient solar light supplemented with light delivered from HPS or LED. In general, seedlings grown under LED had significantly greater growth, gas exchange rates, and chlorophyll contents than those seedlings grown under HPS. The growth and physiological responses to supplemental lighting varied greatly among species and seed sources. Generally, LED-grown seedlings from BC had the greatest growth and tissue dry matter followed by ID and NM populations. Compared with HPS, the significant increase in seedling growth and concomitant energy savings with LED (29% energy consumption relative to HPS) demonstrates the promise of using LED as PAR supplemental lighting for container seedling production.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0045-5067 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number LoNNe @ kyba @ Serial 1250  
Permanent link to this record
 

 
Author Rumanova, V.S.; Okuliarova, M.; Molcan, L.; Sutovska, H.; Zeman, M. url  doi
openurl 
  Title Consequences of low-intensity light at night on cardiovascular and metabolic parameters in spontaneously hypertensive rats Type Journal Article
  Year 2019 Publication (up) Canadian Journal of Physiology and Pharmacology Abbreviated Journal Can J Physiol Pharmacol  
  Volume 97 Issue 9 Pages 863-871  
  Keywords Animals; mouse models  
  Abstract Circadian rhythms are an inherent property of physiological processes and can be disturbed by irregular environmental cycles, including artificial light at night (ALAN). Circadian disruption may contribute to many pathologies, such as hypertension, obesity and type 2 diabetes, but the underlying mechanisms are not understood. Our study investigated the consequences of ALAN on cardiovascular and metabolic parameters in spontaneously hypertensive rats (SHR), which represent an animal model of essential hypertension and insulin resistance. Adult males were exposed to a light (L)/dark (D) cycle of 12:12 h and the ALAN group experienced dim light at night (1-2 lux), either for 2 or 5 weeks. Rats on ALAN showed a loss of LD variability for systolic blood pressure (SysBP), but not for heart rate. Moreover, a gradual increase of SysBP was recorded over 5 weeks of ALAN. Exposure to ALAN increased plasma insulin and hepatic triglyceride levels. An increased expression of metabolic transcription factors, Pparalpha and Ppar, in the epididymal fat and a decreased expression of Glut4 in the heart was found in the ALAN group. Our results demonstrate that low-intensity ALAN can disturb BP control and augment insulin resistance in SHR, and may represent a serious risk factor for cardiometabolic diseases.  
  Address Faculty of Natural Sciences, Comenius University, Animal Physiology and Ethology , Ilkovicova 6 , Slovakia , Bratislava, Slovakia, Slovakia , 84215 ; mzeman@fns.uniba.sk  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0008-4212 ISBN Medium  
  Area Expedition Conference  
  Notes PMID:31251886 Approved no  
  Call Number GFZ @ kyba @ Serial 2567  
Permanent link to this record
 

 
Author Rumanova, V.S.; Okuliarova, M.; Molcan, L.; Sutovska, H.; Zeman, M. url  doi
openurl 
  Title Consequences of low-intensity light at night on cardiovascular and metabolic parameters in spontaneously hypertensive rats (1) Type Journal Article
  Year 2019 Publication (up) Canadian Journal of Physiology and Pharmacology Abbreviated Journal Can J Physiol Pharmacol  
  Volume 97 Issue 9 Pages 863-871  
  Keywords Animals; Ppar; blood pressure; circadian; circadien; insulin resistance; metabolism; metabolisme; recepteurs actives par les proliferateurs de peroxysomes; resistance a l'insuline; tension arterielle  
  Abstract Circadian rhythms are an inherent property of physiological processes and can be disturbed by irregular environmental cycles, including artificial light at night (ALAN). Circadian disruption may contribute to many pathologies, such as hypertension, obesity, and type 2 diabetes, but the underlying mechanisms are not understood. Our study investigated the consequences of ALAN on cardiovascular and metabolic parameters in spontaneously hypertensive rats, which represent an animal model of essential hypertension and insulin resistance. Adult males were exposed to a 12 h light – 12 h dark cycle and the ALAN group experienced dim light at night (1-2 lx), either for 2 or 5 weeks. Rats on ALAN showed a loss of light-dark variability for systolic blood pressure, but not for heart rate. Moreover, a gradual increase of systolic blood pressure was recorded over 5 weeks of ALAN. Exposure to ALAN increased plasma insulin and hepatic triglyceride levels. An increased expression of metabolic transcription factors, Pparalpha and Ppargamma, in the epididymal fat and a decreased expression of Glut4 in the heart was found in the ALAN group. Our results demonstrate that low-intensity ALAN can disturb blood pressure control and augment insulin resistance in spontaneously hypertensive rats, and may represent a serious risk factor for cardiometabolic diseases.  
  Address Department of Animal Physiology and Ethology, Faculty of Natural Sciences, Comenius University, Bratislava, Slovakia  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0008-4212 ISBN Medium  
  Area Expedition Conference  
  Notes PMID:31251886 Approved no  
  Call Number GFZ @ kyba @ Serial 2811  
Permanent link to this record
 

 
Author Patel, J.S.; Radetsky, L.; Rea, M.S. url  doi
openurl 
  Title The Value of Red Light at Night for Increasing Basil Yield Type Journal Article
  Year 2018 Publication (up) Canadian Journal of Plant Science Abbreviated Journal Can. J. Plant Sci.  
  Volume 98 Issue 6 Pages 1321-1330  
  Keywords Plants  
  Abstract Sweet basil (<i>Ocimum basilicum L.</i>) is primarily used for culinary purposes, but it is also used in the fragrance and medicinal industries. In the last few years, global sweet basil production has been significantly impacted by downy mildew caused by <i>Peronospora belbahrii</i>. Nighttime exposure to red light has been shown to inhibit sporulation of <i>P. belbahrii</i>. The objective of this study was to determine if nighttime exposure to red light from light-emitting diodes (LEDs; λ<sub>max</sub> = 625 nm) could increase plant growth (plant height and leaf size) and yield (number and weight of leaves) in basil plants. In two sets of greenhouse experiments, red light was applied at a photosynthetic photon flux density (PPFD) of 60 µmol m<sup>-2</sup> s<sup>-1</sup> during the otherwise dark night for 10 hours (from 20:00 to 06:00). The results demonstrate that exposure to red light at night can increase the number of basil leaves per plant, plant height, leaf size (length and width), and leaf fresh and dry weight, compared to plants in darkness at night. The addition of incremental red light at night has the potential to be cost-effective for fresh organic basil production in controlled environments.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0008-4220 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number GFZ @ kyba @ Serial 1955  
Permanent link to this record
 

 
Author Zubidat, A.E.; Fares, B.; Fares, F.; Haim, A. url  doi
openurl 
  Title Artificial Light at Night of Different Spectral Compositions Differentially Affects Tumor Growth in Mice: Interaction With Melatonin and Epigenetic Pathways Type Journal Article
  Year 2018 Publication (up) Cancer Control : Journal of the Moffitt Cancer Center Abbreviated Journal Cancer Control  
  Volume 25 Issue 1 Pages 1073274818812908  
  Keywords Human Health; 6-Smt; Cfl; EE-halogen; GDM-levels; body mass; carbon; corticosterone; cosinor analysis; light at night; yellow-LED  
  Abstract Lighting technology is rapidly advancing toward shorter wavelength illuminations that offer energy-efficient properties. Along with this advantage, the increased use of such illuminations also poses some health challenges, particularly breast cancer progression. Here, we evaluated the effects of artificial light at night (ALAN) of 4 different spectral compositions (500-595 nm) at 350 Lux on melatonin suppression by measuring its urine metabolite 6-sulfatoxymelatonin, global DNA methylation, tumor growth, metastases formation, and urinary corticosterone levels in 4T1 breast cancer cell-inoculated female BALB/c mice. The results revealed an inverse dose-dependent relationship between wavelength and melatonin suppression. Short wavelength increased tumor growth, promoted lung metastases formation, and advanced DNA hypomethylation, while long wavelength lessened these effects. Melatonin treatment counteracted these effects and resulted in reduced cancer burden. The wavelength suppression threshold for melatonin-induced tumor growth was 500 nm. These results suggest that short wavelength increases cancer burden by inducing aberrant DNA methylation mediated by the suppression of melatonin. Additionally, melatonin suppression and global DNA methylation are suggested as promising biomarkers for early diagnosis and therapy of breast cancer. Finally, ALAN may manifest other physiological responses such as stress responses that may challenge the survival fitness of the animal under natural environments.  
  Address 1 The Israeli Center for Interdisciplinary Research in Chronobiology, University of Haifa, Haifa, Israel  
  Corporate Author Thesis  
  Publisher SAGE Place of Publication Editor  
  Language English Summary Language English Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1073-2748 ISBN Medium  
  Area Expedition Conference  
  Notes PMID:30477310; PMCID:PMC6259078 Approved no  
  Call Number IDA @ john @ Serial 2143  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: